$BBh(B1$BF|(B | |||||
---|---|---|---|---|---|
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$B%7%s%]%8%&%`(B $B!c29CH2=BP:v$rC4$&>xN15;=Q(B-$B%b%G%j%s%0$+$i%W%m%;%91?E>$^$G!d(B | |||||
(9:00$B!A(B9:40)$B!!(B($B;J2q(B $B>.?{?M;|(B) | |||||
B101 | [$BE8K>9V1i(B] $B%W%m%;%9A4BN$rPmbW$7$?>J;q8;!&>J%(%M%k%.!<$N | resource saving energy saving process design and operation | S-18 | 1106 | |
(9:40$B!A(B11:00)$B!!(B($B:BD9(B $B>>ED7=8g(B) | |||||
B103 | $BFbItG.8r49>xN1Ec(B(HIDiC)$B$N5sF0(B | HIDiC distillation energy saving | S-18 | 214 | |
B104 | $BFbItG.8r497?>xN1Ec(B(HIDiC)$B$NIi2YJQF01?E>$N7k2L$K$D$$$F(B | HIDiC Distillation Energy Saving | S-18 | 322 | |
B105 | $B%W%l!<%H%U%#%s7?(BHIDiC$B$K$h$k6u5$J,N% | HIDiC cryogenic distillation air separation | S-18 | 1032 | |
B106 | HIDiC$B2=:GE,%"%W%j%1!<%7%g%sA*Dj$H$=$N5;=QGX7J(B | Column Grand Composite Curve Component Pinch Energy Saving | S-18 | 1102 | |
(11:00$B!A(B12:00)$B!!(B($B:BD9(B $B4dJI9,;T(B) | |||||
B107 | Compressorless HIDiC$B%7%9%F%`$N2DG=@-(B | Multi-component distillation Energy saving Compressorless HIDiC | S-18 | 11 | |
B108 | $BBg8}7B(BHIDiC$B$N | HIDiC Distillation Experiment | S-18 | 711 | |
B109 | $BBg8}7B(BHIDiC$B$N%7%_%e%l!<%7%g%s%b%G%k$N8!F$(B | HIDiC Distillation Simulation | S-18 | 722 | |
(13:00$B!A(B13:40)$B!!(B($B;J2q(B $BCf4d(B $B>!(B) | |||||
B113 | [$B>7BT9V1i(B] Energy Saving by Heat Integration in Distillation Process | energy saving heat integration control | S-18 | 631 | |
(13:40$B!A(B14:40)$B!!(B($B:BD9(B $B?9(B $B=( | |||||
B115 | $BFbItG.8r497?>xN1Ec$N9=B$$*$h$S1?E>$HB?=EDj>o>uBV(B | heat integrated distillation column multiple steady states operation and control | S-18 | 50 | |
B116 | HIDiC$B%7%9%F%`$N(BgPROMS$B$K$h$k%b%G%j%s%0(B | modeling exergy analysis HIDiC | S-18 | 603 | |
B117 | $B%W%l!<%H7?G.8r494o9=B$$rM-$9$k(BHIDiC$B$K$h$k%W%m%;%96/2=(B | plate heat exchanger heat integration process intensification | S-18 | 24 | |
(14:40$B!A(B15:40)$B!!(B($B:BD9(B $B9>1[?.L@(B) | |||||
B118 | $BFbItG.8r497?>xN1Ec(B(HIDiC)$B$K$*$1$kJ* | HIDiC distillation heat transfer | S-18 | 539 | |
B119 | $BB.EYO@%b%G%k$K4p$E$/FbItG.8r497?>xN1Ec(BHIDiC$B$N2r@O(B | HIDiC Distillation Rate based model | S-18 | 729 | |
B120 | $B | Rate based model Vapor/Liquid contacting Device Simulation | S-18 | 732 | |
(15:40$B!A(B16:40)$B!!(B($B:BD9(B $B_@B<8wMx(B) | |||||
B121 | $BH?1~>xN1%W%m%;%9$NB.EYO@%b%G%k$K$h$k2r@O(B | Reactive Distillation Rate Based Model Simulation | S-18 | 739 | |
B122 | $B>xN1(B-$BJ,N%Kl%O%$%V%j%C%I%W%m%;%9$K$h$kB?@.J,7OJ,N%(B | Simulation distillation membrane | S-18 | 1048 | |
B123 | $BD60!NW3&%W%m%Q%s$K$h$k%P%$%*%(%?%N!<%k$N>J%(%MC&?e%W%m%;%9$N:GE,2=(B($B$=$N(B2) | Supercritical Extraction Dehydration Ethanol | S-18 | 94 | |
(16:40$B!A(B17:20)$B!!(B($B:BD9(B $B>.?{?M;|(BE$B4dJI9,;T(BE$B>>ED7=8g(B) | |||||
_ | |||||
$BBh(B2$BF|(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$B%7%s%]%8%&%`(B $B!c5[Ce!&%$%*%s8r49$N%0%j!<%s%F%/%N%m%8$X$NE83+!d(B | |||||
(9:00$B!A(B10:00)$B!!(B($B:BD9(B $BOBEhN4>;(B) | |||||
B201 | $B%T%j%8%k7?%+%j%C%/%9(B[4]$B%"%l!<%s4^?; | calix[4]arene ion exchange silver | S-17 | 468 | |
B202 | Na$BE:2C$K$h$k4uEZN`A*Br@-$N0[$J$k%+%k%\%s;@7O%+%j%C%/%9(B[4]$B%"%l!<%s$N3+H/(B | calix[4]arene extraction rare earth | S-17 | 460 | |
B203 | Novel Lignin Gel for the Recovery of Precious Metals | precious metal recovery adsorption | S-17 | 172 | |
(10:00$B!A(B11:00)$B!!(B($B:BD9(B $B9>F,N50l(B) | |||||
B204 | $B%8%A%*%+!<%P%a%$%H4p$rF3F~$7$?%-%H%5%s$K$h$k6bB0$N5[CeJ,N%FC@-(B | chitosan dithiocarbamate adsorption | S-17 | 837 | |
B205 | $B2=3X=$>~$7$?8E;f$rMQ$$$?6bB0$N2s<}(B | wastepaper precious metal adsorption | S-17 | 618 | |
B206 | Adsorptive removal of phosphate, phosphite and hypophosphite from aqueous solution using Zr(IV)-loaded orange waste | Orange waste Adsorption pH effect | S-17 | 234 | |
(11:00$B!A(B12:00)$B!!(B($B:BD9(B $B>>7(MN2p(B) | |||||
B207 | $B3A=B1U$rMQ$$$?6b$N6E=8!&J,N%(B | gold persimmon juice coagulation | S-17 | 599 | |
B208 | A new adsorbent prepared from Ferric Hydroxide and Chitosan for As adsorption | arsenic chitosan ferric hydroxide | S-17 | 788 | |
B209 | Removal of As from Ground water by Ferric Hydroxide/Chitosan adsorbent | arsenic adsorption chitosan ferric hydroxide | S-17 | 809 | |
(13:00$B!A(B13:40)$B!!(B($B;J2q(B $B;y6L> | |||||
B213 | [$BE8K>9V1i(B]CO2$B=|5n!&G;=L%7%9%F%`$N:GE,2= | Adsorption and Desorption of CO2 Honeycomb Absorbant System Optimization | S-17 | 194 | |
(13:40$B!A(B14:40)$B!!(B($B:BD9(B $BBgEO7<2p(B) | |||||
B215 | $BE7A3%<%*%i%$%H$N%$%*%s8r49G=$K$h$k3$?e$+$i$NG@6HMQ:OG]MO1U:n@.(B | natural zeolite seawater ion exchange | S-17 | 898 | |
B216 | Nitrate Adsorption on Bamboo Charcoal, and Carbonized Rice Husk | adsorption bamboo charcoal carbonized rice husk | S-17 | 1031 | |
B217 | REMOVAL OF HEXAVALENT CHROMIUM FROM AQUEOUS SOLUTION BY ADSORPTION USING MONGOLIAN NATURAL ZEOLITE | Hexavalent Chromium Adsorption Mongolian Natural Zeolite | S-17 | 373 | |
(14:40$B!A(B15:20)$B!!(B($B:BD9(B $B@n4nED1Q9'(B) | |||||
B218 | $B%"%_%s=$>~%j%s;@%8%k%3%K%&%`$N?eG.>r7o2<$G$N%3%P%k%H5[Ce(B | zirconium hydrogenphosphate cobalt adsorbent hydrothermal conditions | S-17 | 121 | |
B219 | $B%?%s%Q%/ | biomass precious metal adsorption | S-17 | 684 | |
$BBh(B3$BF|(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$B%7%s%]%8%&%`(B $B!c2=3X%W%m%;%9$N8zN(E*$J@8;:!&1?E>4IM}$r$a$6$7$F!d(B | |||||
(9:00$B!A(B10:40)$B!!(B($B:BD9(B $BD9C+It?-<#(BE$B1JED8g(B) | |||||
B301 | [$BE8K>9V1i(B] S88$B%b%G%k$K4p$E$/%P%C%A%W%i%s%H$N | ISA-S88 (IEC61512) Batch control Standard | S-1 | 1125 | |
B302 | $B2=3X%W%m%;%9$K$*$1$k@8;:7W2h%9%1%8%e!<%j%s%0%7%9%F%`$NE,MQ;vNc(B | Scheduler APS Optimization | S-1 | 510 | |
B303 | $B3,AX%P%C%A%W%m%;%9%b%G%k$rMxMQ$7$?1?E>7W2h$N:vDj(B | operation planning hierarchical batch process model discrete event system | S-1 | 893 | |
B304 | $B%7%9%F%`7W2h!&1?E>$rBP>]$H$7$?0U;W7hDj;Y1g$N$?$a$N%b%G%j%s%0(B | decision making system planning and operation model standards of conduct | S-1 | 897 | |
B305 | Optimal operating condition for specified molecular weight distribution in continuous free-radical polymerization | Polymer quality control molecular weight distribution objective function | S-1 | 802 | |
(10:40$B!A(B12:00)$B!!(B($B:BD9(B $B66K\K'9((BE$B;3Cf;KI'(B) | |||||
B306 | [$BE8K>9V1i(B] $B%j%5%$%/%k%7%9%F%`$NHs@~7A@-$H:GE,2=@)8f(B | recycle systems nonlinearities process control | S-1 | 1128 | |
B307 | $B%j%"%k%?%$%`:GE,2=@)8f$HB?JQ?t%b%G%kM=B,$K$h$k@)Ls2sHr@)8f$H$N%O%$%V%j%C%I7?@)8f$NDs0F$HMQLr@_Hw$X$NE,MQ(B | real-time optimization closed loop control energy system | S-1 | 160 | |
B308 | $B2=3X9)3X | coaching multiagent system knowledge structure | S-1 | 59 | |
B309 | $B@EEE5$GK2u$rKI;_$9$kF3EE@-%0%i%9%i%$%K%s%0(B | glass lining ECO static charge | S-1 | 167 | |
(13:00$B!A(B14:20)$B!!(B($B:BD9(B $BDS?"5AJ8(BE$BF#_7Lw@8(B) | |||||
B313 | [$BE8K>9V1i(B] Learning Algorithm for Trend Analysis and Fault Diagnosis | Fault Diagnosis Trend Analysis Operation Design | S-1 | 1129 | |
B314 | [$BE8K>9V1i(B] EEMUA$B%,%$%I%i%$%s$K$_$k%W%i%s%H%"%i!<%`%7%9%F%`$N@_7W$HI>2A(B | EEMUA Alarm System Design Virtual Subject | S-1 | 1127 | |
B315 | $B%W%i%s%H%7%_%e%l!<%?$K$h$k1?E>3W?7(B | online simulation plant visualization parameter identification | S-1 | 770 | |
B316 | $B%H%i%C%-%s%0%7%_%e%l!<%?$K$h$k%a%?%s?e>x5$2~ | Tracking simulator Steady-state prediction Methane steam reformer | S-1 | 321 | |
(14:20$B!A(B15:40)$B!!(B($B:BD9(B $B;32 | |||||
B317 | $BFHN)@.J,J,@O$rMQ$$$??75,%=%U%H%;%s%5!< | soft sensor independent component analysis process control | S-1 | 449 | |
B318 | $B%^%$%/%m%j%"%/%?$N%;%s%5G[CV$H>uBV?dDj(B | microreactor sensor location state estimation | S-1 | 733 | |
B319 | [$BE8K>9V1i(B] $BJ#?t$N%9%3!<%W$K4p$E$/%W%m%;%9%b%K%?%j%s%0$X$NCNE*%7%9%F%`%:%"%W%m!<%A(B | Process monitoring Intelligent system | S-1 | 1126 | |
_ |