$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
---|---|---|---|---|---|
S$B2q>l(B $BBh(B1$BF|(B | |||||
(9:00$B!A(B10:00)$B!!(B($B:BD9(B $B5H@n;KO:(B) | |||||
S101 | $B%^%$%/%m%A%c%s%M%kFb$NN3;R4V$*$h$SN3;RJILL4V>WFM8=>]$N5<;wE*(BDNS$B2r@O(B | microchannel particle collision | S-5 | 474 | |
S102 | $B?tCM%7%_%e%l!<%7%g%s$K$h$kB?AX%U%#%k%`MOM;2!=P%W%m%;%9$NG4CF@-2r@O(B | multi-layer film coextrusion polymer melt flow | S-5 | 767 | |
S103 | CO2$B2=3X5[<}%W%m%;%9$K$*$1$k1UB&J* | chemical absorption carbon dioxide mass transfer coefficient | S-5 | 833 | |
(10:00$B!A(B11:00)$B!!(B($B:BD9(B $B2O9g=( | |||||
S104 | $B%^%$%/%m%A%c%M%k$rM-$9$k%/%m%9%U%m(B-$B8B30_I2aAuCVFb$N0\F08=>](B | Microchannel Ultrafiltration Cross Flow | S-5 | 628 | |
S105 | $B3J;R%\%k%D%^%sK!$K$h$k(BCarreau$B%b%G%kN.BNN.$l$N?tCM2r@O(B | Lattice Boltzmann method Shear-thinning fluid Carreau model | S-5 | 705 | |
S106 | $B1UE)$N>WFM$rH<$&5$1U3&LL$rDL$7$F$NJ* | mass transfer air-water interface droplet | S-5 | 39 | |
(11:00$B!A(B12:00)$B!!(B($B:BD9(B $B>>7(MN2p(B) | |||||
S107 | $B9bG4@-N.BNCf$NHyN3;RJ,;65sF0$K4X$9$k%b%G%k2r@O(B | dispersion characteristics of fine particles model analysis | S-5 | 435 | |
S108 | $B@P3%F}@=B$%W%m%;%9$K$*$1$k%9%i%j!<$NG4EY0[>o$K4X$9$k8&5f(B | Lime milk Slurry Rheology | S-5 | 831 | |
S109 | $B3&LL3h@-:^$K$h$k93NO8:>/N.$l$NEAG.FC@-(B | Drag reduction Heat transfer Surfactant | S-5 | 850 | |
(13:00$B!A(B14:00)$B!!(B($B:BD9(B $BBg?9N4IW(B) | |||||
S113 | $B%W%m%;%9;~7ONs2hA|$N%/%i%9%?%j%s%0$K$*$1$k%G!<%?JQ49 | clustering process monitorng pattern processing | S-5 | 58 | |
S114 | $BN.2CG]M\%7%9%F%`$NF0E*46EY2r@O(B | dynamic sensitivity fed-batch culture Penicillin | S-5 | 250 | |
S115 | $B%^%$%/%mN.O)$K$*$1$k1U1U%9%i%0N.$rMQ$$$?:.9g!&Cj=P$N?WB.2=(B | Liquid-liquid slug flow Internal circulation flow Microchannel | S-5 | 22 | |
(14:00$B!A(B14:40)$B!!(B($B;J2q(B $B9uED@i=)(B) | |||||
S116 | [$BE8K>9V1i(B]$B>J%(%M%k%.!<$r%?!<%2%C%H$H$7$?%W%m%;%96/2=$NE83+(B | energy savings process intensification heat-integrated distillation | S-5 | 641 | |
(14:40$B!A(B16:00)$B!!(B($B:BD9(B $B@DLZ@kL@(B) | |||||
S118 | $B8GBN9bJ,;R7?G3NAEECS$NF0FC@-$*$h$S@)8f$N8!F$(B | PEFC Dynamics Control | S-5 | 315 | |
S119 | $B%^%$%/%mN.O)Fb1U1UFsAjN.$l$K$*$1$k05NOJQF07WB,$H3&LL$N0BDj@-2r@O(B | micro channel two-phase flow pressure | S-5 | 13 | |
S120 | Y$B;z7?%^%$%/%mN.O)Fb$K$*$1$k1U!9FsAj%9%i%0N.$KM?$($kN.B.$N1F6A(B | microchannel slug flow two-phase flow | S-5 | 523 | |
S121 | $B?eMO1U$K$*$1$kEE5$N.BNNO3X$r1~MQ$7$?%b!<%?$N3+H/(B | electrohydrodynaamics motor water | S-5 | 336 | |
(16:00$B!A(B17:00)$B!!(B($B:BD9(B $BNkLZ(B $BMN(B) | |||||
S122 | $B?tCM2r@O$rMQ$$$?(BTaylor$B12$NN.BN2r@O(B | Taylor Vortex Flow Analysis | S-5 | 866 | |
S123 | $B%"%9%Z%/%HHf$N>.$5$$(BTaylor$B12$K$h$k8G1U:.9gAj$N_I2a | Taylor vortex flow Reynolds number Cake layer | S-5 | 229 | |
S124 | Taylor-couette$B12N.$l$K$*$1$kA}?#FC@-(B | Taylor-couette vortex flow spirulina chlorophyll | S-5 | 910 | |
(17:00$B!A(B18:00)$B!!(B($B:BD9(B $BCf4d(B $B>!(B) | |||||
S125 | PEG$BB8:_2<$K$*$1$kEE3&A`:n$K$h$kAj7A@.$NB%?J(B | Alternate current Polyethylene glycol Phase | S-5 | 65 | |
S126 | $B%l!<%682Hy6@$rMQ$$$?@\?(>uBV2<$NN3;RI=LL$ND>@\4Q;!(B | heat transfer surface roughness thermal resistance | S-5 | 1001 | |
S127 | $B1U(B-$B1UCj=P7O$K$*$1$k(BMarangoni$B8z2L$K$h$k3&LL3IMp$N7ABV(B | liquid-liquid extraction Marangoni effect mass transfer | S-5 | 681 | |
S$B2q>l(B $BBh(B2$BF|(B | |||||
(9:20$B!A(B10:40)$B!!(B($B:BD9(B $BAjEDN4;J(B) | |||||
S202 | $B?eAG4T85$K$h$k7nEZ>m$+$i$N?e@=B$$K$*$1$kH?1~5!9=$N8!F$(B | lunar soil hydrogen reduction thermogravimetry | S-5 | 97 | |
S203 | $BF};@$NG;=L;~?eJ,>xH/5sF05Z$S=L9gH?1~B.EYDj?t(B | PLA lactic acid oligomer | S-5 | 221 | |
S204 | $BDLEE2CG.%"%k%^%$%H?(G^$rMQ$$$?%a%?%s?e>x5$2~ | methane steam reforming electrically heated catalyst simulation | S-5 | 415 | |
S205 | $B29EY<~4|A`:n2<$K$*$1$k0l;@2=C:AG$N;@2=5sF0(B | forced temperature cycling carbon monoxide oxidation | S-5 | 358 | |
(10:40$B!A(B12:00)$B!!(B($B:BD9(B $B:y0f(B $B@?(B) | |||||
S206 | Bi-P-O$B?(G^$K$*$1$kN.NL$NAXFb29EY$KM?$($k1F6A(B | catalysis forced flow rate cycling temperature amplification | S-5 | 1013 | |
S207 | $B@F0l%,%9AwF~7?J.N.AX$K$*$1$kJ.N.7A@.2DG=$J:G>.AX9b$5(B | spouted bed draft-tube minimum spoutable bed height | S-5 | 847 | |
S208 | $B8G5$7OHyN3;RN.F0AX$NN.F02=FC@-$HFsAj@b@.N)DxEY(B | fine particle fluidized bed bubble | S-5 | 351 | |
S209 | $BHyN3;RN.F0AX$H7|By5$K"Ec$K$*$1$kAXFb5$K"$NJ,I[B'$K4X$9$kM}O@E*8!F$(B | fluidized bed slurry bubble column spatial bubble distribution | S-5 | 355 | |
(13:00$B!A(B13:40)$B!!(B($B;J2q(B $BBgB | |||||
S213 | [$BE8K>9V1i(B]$B?75, | Process Intensification | S-5 | 654 | |
(13:40$B!A(B14:40)$B!!(B($B:BD9(B $B?"EDMx5W(B) | |||||
S215 | $BO"B3F}2==E9g%W%m%;%9$K$*$1$k%i%F%C%/%9N3;R7B$NJQF05sF0(B | Continuous Emulsion Polymerization Process Dynamics Particle Size Distribution | S-5 | 420 | |
S216 | $B6&<42sE>Fs=E1_E{4V$N5$1UFsAjN.$NN.F0!&:.9gFC@-(B | Taylor-Couette Flow Bubbly Flow Flow Vsualization | S-5 | 365 | |
S217 | $BF|N)3J;RMc=E9g4o$K$*$1$k>xH/I=LL@Q$*$h$S1ULL99?7B.EY$N8!F$(B | Computational Fluid Dynamics Free Surface Polymerization | S-5 | 137 | |
(14:40$B!A(B16:00)$B!!(B($B:BD9(B $B30NX7r0lO:(B) | |||||
S218 | $B8~N.7?(Bdouble channel$B%^%$%/%m%_%-%5!<$N:.9gFC@-$K5Z$\$9N.O)9=B$$N1F6A(B | micromixer mixing principle channel geometry | S-5 | 1068 | |
S219 | $B%9%?%F%#%C%/%_%-%5!<$N:.9gI>2AK!$K4X$9$k8!F$(B | chaotic mixing mixing estimation static mixer | S-5 | 841 | |
S220 | $BN.BNJ,3d5!G=$N8~>e$rL\;X$7$?J,4t7?%A%c%M%k$N3+H/(B | micro channel separate | S-5 | 256 | |
S221 | $B?6F0H?1~$N<~4|$K5Z$\$93IYB$N1F6A(B | Belousov-Zhabotinsky reaction stirring mixing | S-5 | 439 |