$B?9?-2p!JEl9)Bg!K!&LnEDM%!JEl5~Bg!K!&CSED7=!J%"%F%J%7%9!K(B |
$BBgLL@Q$+$DDc%3%9%H$G$NGvKl!&HyN3;R7A@.5;=Q$d?7$7$$9b5!G=Kl$N@=Kl!&2C9)5;=Q$,!"B@M[EECS$dEE;R%G%P%$%9!"(BMEMS$B!"%^%$%/%m%j%"%/%?$J$IMM!9$JJ,Ln$G5a$a$i$l$F$$$^$9!#K\%7%s%]%8%&%`$G$O!"GvKl7A@.!&HyN3;R9g@.!&Hy:Y2C9)%W%m%;%9$K$*$1$k9=B$!&5!G=@)8f5;=Q$K$D$$$F!":GE,>r7o$r7P83E*$KC5:w$9$k$N$G$O$J$/!"H?1~%a%+%K%:%`$NM}2r$rDL$7$?O@M}E*$J:GE,2=$rL\;X$75DO@$9$k$3$H$rL\E*$H$7$^$9!#$J$*!"M%=($JH/I=$r$5$l$?
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
---|---|---|---|---|---|
G$B2q>l(B $BBh(B2$BF|(B | |||||
(9:20$B!A(B10:40)$B!!(B($B:BD9(B $BsnF#(B $B>f{J(B) | |||||
G202 | SiC-CVD$B%W%m%;%9$X$N(BHCl$B%,%9E:2C8z2L(B | CVD SiC QMS | S-8 | 99 | |
G203 | SiC-CVD$B%W%m%;%9$K$*$1$k5$AjH?1~7W;;(B | SiC CVD calculation | S-8 | 484 | |
G204 | SiC-CVD$B%W%m%;%9H?1~5!9=2r@O$N$?$a$NG.J,2r5$Aj | SiC CVD QMS | S-8 | 148 | |
G205 | $BHs>= | $BC:2=7>AG(B CVD $BDc29%W%m%;%9(B | S-8 | 8 | |
(10:40$B!A(B12:00)$B!!(B($B:BD9(B $BCSED(B $B7=(B) | |||||
G206 | [$B>7BT9V1i(B]$BH>F3BN%W%i%:%^%W%m%;%9AuCV$N%7%_%e%l!<%7%g%s5;=Q(B | semiconductor manufacturing equipment plasma processing numerical simulation | S-8 | 419 | |
G207 | $B%W%i%:%^(BCVD$B$K$h$kJ.N.$rMQ$$$?(BSi$B@=Kl$HN.BN!&H?1~2r@O(B | CVD $BGvKl(B $B%7%j%3%s(B | S-8 | 400 | |
G208 | $B%W%i%:%^(BCVD$BK!$K$h$k(BTiC$B7O9E | film growth chemical vapor deposition titanium carbide | S-8 | 509 | |
G209 | $B%@%$%d%b%s%I%i%$%/%+!<%\%s@.KlMQ9b<~GH(BCH4$B%W%i%:%^$N%7%_%e%l!<%7%g%s(B | diamond like carbon plasma simulation | S-8 | 797 | |
(13:00$B!A(B14:00)$B!!(B($B:BD9(B $BAz3@(B $B9,9@(B) | |||||
G213 | [$BE8K>9V1i(B]$BD6DcB;=}Hy:Y2C9)%W%m%;%9$N%J%N%W%m%;%C%7%s%0$X$NE83+(B | Damage-free Neutral beam Nano-material | S-8 | 293 | |
G215 | $B9b=88wH/EEMQ%^%$%/%m=8@QD>Ns@\B3(BGaAs$BB@M[EECS$N;n:n(B | micromachining monolithic integrated solar cells | S-8 | 919 | |
(14:00$B!A(B15:20)$B!!(B($B:BD9(B $B=);3(B $BBY?-(B) | |||||
G216 | Monolithic integration of multi-wavelength InGaN/GaN MQW LEDs via selective area MOVPE | MOVPE nitride semiconductor LED | S-8 | 569 | |
G217 | $BJd=~%I!<%T%s%0$K$h$k(BInGaAs/GaAsP$BNL;R0f8MB@M[EECS$N%-%c%j%"2s<}8zN(8~>e(B | InGaAs / GaAsP quantum well solar cells compensation doping MOVPE | S-8 | 860 | |
G218 | $BB@M[EECSMQ(BCIS$BGvKl:n@=$K$*$1$k(BSe$B2=%W%m%;%9$ND6NW3&N.BN$rMQ$$$?Dc292=(B | CIGS Solar Cell Conversion Supercritical Fluid | S-8 | 682 | |
G219 | Si(111)$B>e(BInAs$B$NA*Br%X%F%m%(%T%?%-%7%c%k@.D9$K$*$1$k3&LLEE5$EAF3FC@-(B | MOVPE selective-area InAs/Si | S-8 | 807 | |
G$B2q>l(B $BBh(B3$BF|(B | |||||
(9:20$B!A(B10:40)$B!!(B($B:BD9(B $BLnED(B $BM%(B) | |||||
G302 | $BD6NW3&N.BN$rMQ$$$?%J%N%$%s%W%j%s%HMQ(BNi$B%b!<%k%I:n@=%W%m%;%9$N3+H/(B | Supercritical Fluid Deposition Ni nano-imprint | S-8 | 498 | |
G303 | $BD6NW3&Fs;@2=C:AG$rMQ$$$?(BTiO2$B!"(BBi2O3$BGvKl@.D9$NH?1~5!9=2r@O$HJ#9gKl2=(B | supercritical carbon dioxide thin film deposition | S-8 | 513 | |
G304 | $BD6NW3&(BCO2$B$rMQ$$$?(BTiO2$BGvKl@=KlMQA06nBN$NA*Br(B | supercritical fluid deposition thin film titanium dioxide | S-8 | 289 | |
G305 | [$B>7BT9V1i(B]$BM-5!J,;R=$>~;@2=J*%J%N7k>=$N9g@.!$=8@Q$H5!G=2=(B | oxide nanocrystals surface modification synthesis, integration, and functionalization | S-8 | 283 | |
(10:40$B!A(B12:00)$B!!(B($B:BD9(B $B?y;3(B $B@5OB(B) | |||||
G306 | $BD6NW3&N.BN$rMQ$$$?%9%H%m%s%A%&%`%k%F%K%&%`;@2=Kl@=Kl%a%+%K%:%`(B | Supercritical Fluid Deposition Strontium ruthenium oxide (SRO) Deposition Mechanism | S-8 | 277 | |
G307 | $BHs5.6bB0;@2=J*EE6K$K$h$k6/M6EEBN%-%c%Q%7%?$N0BDj@-I>2A(B | ferroelectric material pulsed laser deposition conductive oxide | S-8 | 672 | |
G308 | $B%"%k%3%-%7%I86NA$rMQ$$$?%j%A%&%`;@2=J*GvKl$NG.(BCVD | CVD Lithium tert-butoxide Lithium Oxide | S-8 | 825 | |
G309 | ULSI-Cu$BG[@~MQ(BCo(W)$B%P%j%dKl7A@.(BCVD/ALD$B%W%m%;%9$N:GE,@_7W(B | CVD amidinate alloy | S-8 | 92 | |
(13:00$B!A(B14:20)$B!!(B($B:BD9(B $B?9(B $B?-2p(B) | |||||
G313 | [$BE8K>9V1i(B] $B2=3XE*GmN%$*$h$S(BCVD$B$K$h$k%0%i%U%'%s$N@.Kl$HB@M[EECSMQF)L@F3EEKl$X$N1~MQ$HE8K>(B | Graphene Transparent Conductive Film CVD | S-8 | 989 | |
G315 | $B6bB0%U%j!<%0%i%U%'%s$N4pHD>eD>@\7A@.$H9=B$@)8f(B | graphene patterned growth metal-free | S-8 | 210 | |
G316 | Cu-CVD$B%W%m%;%9$N=i4|3KH/@8!&@.D9$KBP$9$k2 | Cu-CVD Nucleation ULSI | S-8 | 759 | |
(14:20$B!A(B15:40)$B!!(B($B:BD9(B $B2O@%(B $B85L@(B) | |||||
G317 | $BDc29$G$N%+!<%\%s%J%N%A%e!<%V$NcGL)9g@.(B | carbon nanotubes chemical vapor deposition low temperature growth | S-8 | 270 | |
G318 | [$B>7BT9V1i(B]$B%J%N%5%$%:J* | nanomaterial gas phase deposition surface formation | S-8 | 288 | |
G319 | $B4pHD>eC1AX%+!<%\%s%J%N%A%e!<%V!"%_%j%a!<%?!<%9%1!<%k@.D9$NI,MW>r7o$H9=B$@)8f(B | single-walled carbon nanotube chemical vapor deposition rapid growth | S-8 | 553 | |
G320 | Catalyst control for millimeter-tall single-walled carbon nanotubes with improved quality and areal density | single walled carbon nanotubes chemical vapor deposition coarsening of catalyst | S-8 | 258 |