$B?y;3(B $B@5OB!JEl5~Bg3X!K!&EgED!!3X!J9-EgBg3X!K!&@n>e(B $B2m?M!JEl5~%(%l%/%H%m%s!K(B |
CVD$B$r$O$8$a$H$9$k%I%i%$%W%m%;%9$O!$%(%l%/%H%m%K%/%9!$B@M[EECS!$(BMEMS$B!$5!G=@-%3!<%F%#%s%0Ey$NJ,Ln$K$*$$$F!$4p445;=Q$H$J$C$F$$$k!#K\%7%s%]%8%&%`$G$O!$(BCVD$B$HN`1o5;=Q$rMxMQ$7$?GvKl7A@.!$HyN3;R9g@.!$Hy:Y2C9)$K$*$1$k@=IJ$N9=B$$H5!G=$r@)8f$9$k$?$a$K!$H?1~%a%+%K%:%`$NM}2r$K$h$kO@M}E*$J:GE,2=$rL\;X$75DO@$9$k$3$H$rL\E*$H$7$^$9!#$J$*!$M%=($JH/I=$r$5$l$?
$B:G=*99?7F|;~!'(B2016-11-29 11:54:01
$B$3$NJ,N`$G$h$/;H$o$l(B $B$F$$$k%-!<%o!<%I(B | $B%-!<%o!<%I(B | $B | |
---|---|---|---|
CVD | 5$B7o(B | ||
carbon nanotube | 3$B7o(B | ||
SiC | 3$B7o(B | ||
Methyltrichlorosilane | 2$B7o(B | ||
supercritical fluid deposition | 2$B7o(B | ||
TiO2 | 1$B7o(B |
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BH/I=7A<0(B | |
---|---|---|---|
20 | $B%I%G%+%s(B/$B%(%?%N!<%k:.9gG3NA$rMQ$$$?%G%#!<%<%k%(%s%8%s$K$*$1$k%+!<%\%s%J%N%A%e!<%V$N9g@.(B | carbon nanotube diesel engine flame synthesis | O |
35 | [$BE8K>9V1i(B] III-V$BB2H>F3BNNL;R%I%C%H@.D9$N$=$N>l4Q;!$H@.D9%a%+%K%:%`(B | MBE STM in-situ | O |
176 | [$BE8K>9V1i(B] Li-ion$BEECS$N8=>u$H2]Bj!"@56K:`$K5a$a$i$l$kFC@-(B | Li-ion Large format battery Positive Electrode Materials | O |
263 | [$BM%=(O@J8>^(B] $B%(%"%m%>%k%J%NN3;RBO@Q$K$h$C$F:n@=$7$?B?9&2$BGvKl$N7ABV$H6u7dN($K>F@.$,M?$($k1F6A(B | Phase transformation Plasma-enhanced CVD Sintering | O |
264 | $B5$8G86NA(BPECVD$BK!$K$h$k9b%"%9%Z%/%HHfN3;RJqKdKl$N9g@.(B | Nanocomposite film Carbon nanotube Abnormal growth | O |
267 | Effect of heat treatments on the photocatalytic activity of Ag-TiO2 nanocomposite films prepared by a one-step gas-phase deposition process | PECVD Annealing Crystal-phase | O |
303 | C5$B!A(BC7$BC:2=?eAG$+$i$NC:AG(BCVD$B$K$*$1$k6bB04pHD$X$N?;C:B.EY$N2r@O(B | CVD Carbon Solid-phase diffusion | O |
395 | [$B>7BT9V1i(B] $BJ,;RdAC:AG$N(Bin silico$B9g@.$K$h$k5$BNJ,N%FC@-@)8f$N8!F$(B | CVD Molecular simulation Air separation | O |
412 | [$B>7BT9V1i(B] $BJ#;(7A>u$X$N9b@-G=?e>x5$ITF)2a$r | atomic layer despoition gas barrier film water vapor transmission rate | O |
429 | $B:FMxMQ%5%U%!%$%"4pHD>e$X$N(BCu$B$N5^B.%(%T%?%-%7!<$H(BCVD$B$K$h$k%0%i%U%'%s$N@:L)9g@.(B | graphene chemical vapor deposition epitaxial growth | O |
533 | $B%W%i%:%^%8%'%C%H(BCVD$BK!$K$h$k%7%j%3%s%J%NN3;R6E=8BN$N9bB.@=Kl$K4X$9$k8&5f(B | CVD plasma nanoparticle | O |
601 | [$B>7BT9V1i(B] $B%_%9%H$rMQ$$$?Bg5$052<$GBgLL@Q$KOK$j9bIJ | mist CVD Leidenfrost effect metal oxide functional thin film | O |
626 | $BG.(BCVD$BK!$K$h$kN)J}>=Cb2=%[%&AGKl9g@.$K8~$1$?8!F$(B | CVD boron nitride coating | O |
634 | $B2=3XE*I=LL=hM}$r;\$7$?(BWC-Co$B4pHD>e$X$N(BTiC$B9E | adhesion strength TiC hard coating Cemented carbide | O |
641 | $BD62;GHL82=%W%m%;%9$K$h$k%Z%m%V%9%+%$%HB@M[EECS$N:n@=(B | perovskite solar cell TiO2 spray-deposition | O |
678 | Ultra-porous carbon electrode fabricated from supercritical drying and application for lithium-air battery | porous carbon electrode supercritical drying lithium-air battery | O |
718 | SiC-CVI$B%W%m%;%9$N=i4|@.D9$KBP$9$k2 | CVD SiC methyltrichlorosilane | O |
769 | $BD6NW3&N.BN$rMQ$$$?F | Supercritical fluid deposition Cu underlayer selectivity | O |
868 | $B%b%N%a%A%k%H%j%/%m%m%7%i%s$rMQ$$$?(BSiC-CVD$B%W%m%;%9:GE,2=$N$?$a$NAm3gH?1~%b%G%k9=C[(B (3) | SiC Methyltrichlorosilane Modelization | O |
903 | $B%9%Q%C%?$K$h$k(BAl$B%I!<%W(BZnO$BEE6K$rM-$9$k6/M6EEBN%-%c%Q%7%?$N:n@=$HI>2A(B | ferroelectric capacitor Al-doped ZnO sputtering | O |
912 | Si-Cu/$B%+!<%\%s%J%N%A%e!<%V(B/Cu$BJ#9gEE6K$N5^B.>xCe$H%j%A%&%`Fs | lithium secondary battery physical vapor deposition carbon nanotube | O |
924 | $BD6NW3&N.BN$rMQ$$$?(BBi4Ti3O12$B@=Kl$K$*$1$kH?1~5!9=2r@O(B | supercritical fluid deposition reaction mechanism Bi4Ti3O12 | O |
972 | $B6Q0l4^?;$rL\;X$7$?(BSiC-CVI$B%W%m%;%9$X$N(BHCl$B%,%9E:2C8z2L(B | SiC CVI | O |
1002 | $B9b=cEY!&9bG[8~@-(BCo$BGvKl7A@.$rL\;X$7$?%[%C%H%o%$%d(BALD$B%W%m%;%9$N:GE,2=(B | Hot-wire-assisted ALD Cobalt | O |