E207

統計解析及び in vitro 試験によるナノ材料のハザード評価

1. 緒言

ナノ材料の研究開発は世界中で行われており、 サイズ・化学種・表面等の異なる物性を持った新 規材料が次々と生産されている。一方、それらの 人体への吸入曝露は肺の線維化(塵肺)等の原因と なるため、ハザード評価や曝露評価が急務である。 ハザード評価の課題には、材料の物性とハザー ドの相関関係の明確化や、より簡便な in vitro 試験 による in vivo のハザード推定手法の確立がある。 本研究では、既報の in vitro・in vivo 試験結果の 統計解析と、結晶質及びアモルファスのシリカ粒 子を用いた in vitro 試験により上記解決を図った。

2. 統計解析の方法と結果

150 報の in vitro 及び in vivo 試験の論文を解析対 象とした。試験材料は各種金属や炭素やシリカな どで、1次粒径はナノからミクロンまで、細胞種 は多種多様で、実験動物は約90%がラットだった。

in vitro 試験の解析では、細胞生存率について、 粒子曝露時間を 24 h に標準化した場合の EC50 (50%有効濃度: 50%の細胞死に要する粒子濃度) を粒子重量濃度単位[µg/mL]で求めた。細胞毒性の 高さは溶解度の高さと正に相関した(図1)。

図 1. 金属・シリカ粒子の溶解度と EC50 の関係

in vivo 試験の解析では、粒子の生理食塩水分散 液を気管内投与し、数日後に回収した気管支肺胞 洗浄液中の LDH(乳酸脱水素酵素:細胞死の際放 出される、肺線維化やガンのマーカー)値を扱った。 LDH 値を粒子表面積濃度[cm²/kg-weight]と投与後 の時間減衰項で関係づけるモデル式により、各化 学種の材料のデータをフィッティングした。さら に 100 cm²/kg 投与時の 1 日後・1 月後の LDH 値を モデルから求め、in vivo 指標とした。

図2は、横軸が pEC50(=-Log₁₀EC50)、縦軸が in

(東大院工) ○(学)宮負 健一*・(正)稲澤 晋・(正)荒川 正幹・(正)船津 公人・(正)山口 由岐夫 (国際医セ)(正)花田 三四郎・(正)山本 健二

> vivo 指標の散布図である。pEC50 と1 日後の LDH 値とは中程度の相関があったが、1月後のLDH 値 とはほとんど相関がなかった。また、アモルファ スシリカと、肺線維化能がより高く許容濃度基準 のより厳しい結晶質シリカに着目した。アモルフ ァスの方が細胞毒性は高い(pEC50 が大きい)にも 関らず in vivo の LDH 値は小さく、逆相関となっ た。つまり、in vivo の細胞毒性の高低は in vitro 試 験の細胞毒性の高低から単には予測できず、EC50 に代わる in vitro 指標が必要であると言える。

図 2. pEC50(in vitro)と LDH(in vivo)の関係

3. 新規 in vitro 指標の探索方法と結果

肺線維化促進因子の TGF-β1 産生量に着目して in vitro 比較試験を行った。結晶質シリカ粒子(一次 粒径 400 nm)と、アモルファスシリカ粒子(12・ 120・1400 nm の 3 種)を、1.56~400 µg/mL でマウ ス肺胞マクロファージに 48 h 曝露させ、TGF-β1 及び MIP-2 の産生量と細胞生存率を測定した。

TGF-B1 産生量は、結晶質シリカのみコントロ ールレベルを越え、in vivo での肺線維化能並びに 図2のLDH 値と相関した(図3)。 in vivo のハザー ド推定指標として TGF-β1 が有望と示唆された。

図 3. シリカ粒子(4 種)の濃度と TGF-β1 産生量の関係

* TEL, FAX: 03-5841-7309 E-mail: kenichi@chemsys.t.u-tokyo.ac.jp