F303

壁効果が支配的な微小金型空間への顆粒の均質充填

(同志社大理工)〇(学)槇野 定人*,(学)赤司 雅俊,(正)下坂 厚子,(正)白川 善幸,(正)日高 重助

<u>1. 緒言</u>

現代社会において重要な役割を果たしている機能 性焼結材料は,ますます高機能化と高精度化を進める とともに急速な小型化が進んでいる.焼結材料は,一 般に微粒子原料スラリーの噴霧乾燥による顆粒の調 製,圧縮成形と焼結操作により生産され,焼結後は非 常に高度が高いために焼結後の寸法修正は容易では なく,またその機能特性は化学組成に加えて微構造に 極めて鋭敏で,高機能焼結体では微構造の高い均質性 が求められる.

この高い微構造の均質性を達成するには,まず成形 用金型の微小キャビティ内に顆粒が均一に充填され ることが必要である.このキャビティの大きさはデバ イスや材料の小型化により急速に小さくなり,壁効果 が支配的である微小キャビティ空間に高速で均一に 粒子を充填する方法の確立は粉体工学における新た な課題となっている.そこで,微小空間内への充填流 動模様と粒子偏析メカニズムの解明,顆粒充填構造に 及ぼす粒子特性,供給条件の影響を明らかにすること を目的として精密な大規模粉体充填シミュレーショ ンの構築を試みた.

<u>2. 実験条件</u>

充填シミュレーションの妥当性の検証を目的とし て,Fig.1に示す装置を用い,給粉機を移動速度100 mm/sとして金型への顆粒の充填実験を行った.試料 にはTable1の粒径分布を有する三酸化タングステン (WO₃)顆粒を使用し,内径8mm,高さ50mmの円筒 形金型を用いた.給粉機内部にはFig.1のように仕切 り板を設置し,給粉機後方よりNo.1の試料から順に 各2g流入させ,最後に仕切り板を取り去り粒子群の 初期配置をシミュレーションと同一にした.

3. シミュレーション条件

本充填シミュレーションは,離散要素法(DEM)を用 いて構築した. DEM は,粒子間の接触相互作用力を Fig. 2に示すバネとダッシュポットによってモデル化 し,各粒子に対する運動方程式を解いて,粒子の挙動 をシミュレートする方法である.このモデルに必要と なる WO₃ 顆粒の各特性値ならびにシミュレーション 条件を Table 2 に示す.給粉機,金型の寸法は実験と 同一とし,Table 1 に示す 5 種類の粒子径に対して, 粒子質量2gに相当する個数の各粒子群を実験条件と 同一となるように給粉機内へ配置した.

Normal Shear Fig. 2 Contact model

Table 1 Particle size distribution of sample			
Sample No.	Experiment	Simulation	
1	-1000 μm +850 μm	925 μm	
2	-850 μm +710μm	780 µm	
3	-710 μm +500 μm	605 µm	
4	-500 μm +250 μm	375 µm	
5	-250 μm +106 μm	178 μm	

Table 2 Simulation condition				
Parameters	Value	Unit		
Time step	1×10^{-7}	[s ⁻¹]		
Number of step	30000000	[-]		
Number of particle	264721	[-]		
Particle density	5240	$[kg/m^3]$		
Friction coefficient	0.8258	[-]		
Spring constant	650	[N/m]		
Rolling friction coefficient	7.5	[-]		

<u>4. 結果および考察</u>

実験および本シミュレーションにおける金型内への流入挙動を Fig.3 に示す.金型前方の壁面に粒子が 衝突して充填される挙動は良く一致しており,構築し たシミュレーションを用いて,実際の給粉機における 金型への充填操作の設計を検討することができる.

金型上部,中央部および下部の各部位に充填された 粒子の粒子径分布を Fig.4 に示す.実験,シミュレー ションともに金型下部には細粒が多く充填され,同様 の傾向を示したが,中央部は,実験では粗粒が,シミ ュレーションでは細粒が主に充填され、傾向を異にし ている。これは本シミュレーションにおける細粒の流 動性が実験試料よりも高いために金型中央部に多く 充填されたためで,シミュレーションにおける粒子特 性の決定法に対する課題を示唆している.

5. 結言

実規模での金型充填操作設計を検討できる粉体シ ミュレーションを構築した.シミュレーションに用い る付着力や摩擦係数などの粒子特性は粒子群の平均 値を用いているが,実験値とシミュレーション値を直 接比較する場合は特性の分布を考慮する必要がある.