N125

半導体材料の静電紡糸

(兵庫県大・院工)○(正)飯村健次*,宮前康助,(正)鈴木道隆

ガスセンサの検知方式には熱伝導式,接触燃焼式, 半導体式などがあるが,取り扱いが容易であること, コストが安価であることから半導体式のものがよく用 いられる.半導体式ガスセンサに用いられるセンサ素 子構造は焼結型と薄膜型に大別できる.焼結型では原 料粉末に少量の水などを加え,混練したペーストを電 極間につけた後,乾燥,焼結して作られる.薄膜型で は CVD 法,スパッタリング,蒸着法,ゾル-ゲル法 などが用いられているが、成形後の加工性が乏しく, デバイスの形状,用途が限定されるという欠点がある. 本研究ではこの問題の解決法として半導体特に酸化亜 鉛の繊維化を提案する.

2. 実験

2.1 前駆体溶液の調製

目的の酸化物を得るために、出発原料には塩化亜鉛 (キシダ化学製)を用い、ZnCl₂・C₂H₅OH・H₂O-Acetylacetone-TEOS 溶液を調製した. ここで TEOS は溶液のゲル化助剤であり、アセチルアセトンは安定 化財として添加している.反応中は、エアーポンプを 用いて流量 300ml/min の割合で加湿空気を反応器内 に流入させる.反応が進むにつれてゾルの粘度が増し ていき、やがて全体がゲル化する.本実験ではゲル化 する直前の曵糸性のある時点で紡糸を行った.

2.2 紡糸及び繊維の評価

粘度の上昇したゾルを注射器に入れ、電極に直流高 圧安定化電源により電圧を印加し、ゾルを噴霧した. これにより生成した繊維をステンレス製のコレクター 上に捕集した.得られた繊維は走査型電子顕微鏡を用 いて観察した.また、得られた繊維を焼成し、その後 X線回折装置によって生成結晶相の同定を行った.

2.3 ガスセンサ特性評価

3 ゾーン式セラミック電気管状炉によって制御され た温度下で,所定のエタノール濃度に調整したターゲ ットガスを流入する.ターゲットガス接触時の抵抗変 化をデジタルマルチメーターによって測定し,コンピ ュータで記録する.雰囲気温度は 300℃に設定し,エ タノールガス濃度は 100ppm とし.

3. 結果と考察

3.1 繊維物性

得られた繊維の写真を Fig. 1 (a), SEM 画像を Fig. 1 (b)に示す. 図から分かるように不織布として成形で

きており、課題であった脆性も手に取る程度では崩れ ないある程度の改善が見られた.また、SEM 画像か ら分かるように繊維径は約 $10 \mu m$,連続的な繊維を観 察することができた.繊維を焼成し、XRD 測定を行 った結果、低温焼成では ZnO の結晶相が確認できた. また、高温焼成時にはケイ酸亜鉛 Zn₂SiO₄の結晶相が 確認できた.

3.2 ガスセンサ特性

3.2.1 低温焼成時

作製した繊維はn型半導体であるZnOを含んでおり, エタノールガス流入時には抵抗が減少し,停止後にほ ぼ流入前の抵抗値に戻るという挙動を示すはずである. しかしながら, Fig.2(a)に示す通り,ガス切り換え時 に生じるはずの抵抗変化は見られなかった. 焼成後の 繊維は黒色で繊維表面もしくは繊維中に有機成分が存 在しているのは明らかでり,有機成分がガスの吸着及 び電荷の移動に影響を与えていることが考えられる. 今後,焼成条件や洗浄法を最適化することである程度 の性能向上が期待できる.

3.2.2 高温焼成時

エタノールガスに対する抵抗変化測定の結果を Fig.4(b)に示す.エタノールガス流入時に抵抗が上昇し たが、ガスを停止しても抵抗はほぼ一定の状態で抵抗 が減少するといった現象は確認できなかった.今回作 製した繊維ではエタノールガス停止後の酸素吸着が起 こっていない可能性があり、今後吸脱着メカニズムを より詳細に明らかにする必要がある.

Fig.1 Photograph(a) and SEM image(b) of ZnO-SiO₂ gel fiber

^{*} iimura@eng.u-hyogo.ac.jp