P104

金属塩添加水酸化マグネシウムの脱水反応特性

(東工大院理工) (学)石飛 宏和 (東工大原子炉研)(正)劉 醇一*·(正)加藤 之貴

1. 緒言 エネルギーの高効率利用のために,熱エネルギーを貯蔵・蓄熱する技術を確立することが社会的に要請されている.特にケミカルヒートポンプ(CHP)は長期熱貯蔵が可能,蓄熱密度が大きいという利点がある.当研究グループではLiCl修飾 MgO/H2O 系ケミカルヒートポンプを提案している^[1,2].

今回の報告では LiCl 修飾 $Mg(OH)_2$ の脱水反応特性 について,脱水温度 (T_d) をパラメータにして実験的 に検討を行った.

2. 実験 試料(LiCl/Mg(OH) $_2$)は LiCl の混合モル比(α) が 0.10 になるよう含浸法により調製した . α は Eq. (1) のように定義した .

$$\alpha = \frac{\text{LiCl} \mathbf{O}$$
物質量[mol]}{Mg(OH)₂の物質量[mol]} (1)

試料の反応性評価は熱天秤 (TGD9600; Ulvac 社)を用いて行った. 試料の物理吸着水を除去するため,測定直前に試料を120°Cで30分間維持した.次に,Ar 気流下において所定の温度(LiCl/Mg(OH)2:200,230,250,280,300°C,Mg(OH)2:250,280,300,350°C)を維持し,脱水反応による重量変化を測定した.

脱水反応の進行度はMg系化合物中のMg(OH)2のモル分率から評価した.モル分率はEq.(2)のように,試料の重量変化から求めた.完全に水和している状態が100%,完全に脱水している状態が0%である.

$$y = 1 + \frac{\Delta m_{\text{H}_2\text{O}}}{M_{\text{hydroxide}}} \times 100 \text{ [\%]}$$
 (2)

ここで, $M_{\rm H2O}$;水の分子量, $M_{\rm hydroxide}$; ${\rm Mg(OH)_2}$ の分子量, $\Delta m_{\rm H2O}$;水の重量変化量, $W_{\rm hydroxide}$;各サンプルの初期重量 である.

3. 結果と考察 脱水速度解析を積分法で行った . 全域 反応モデルを仮定し、脱水反応の次数を一次とした以 下の速度式の適応性を検討した .

$$- dy/dt = ky (3)$$

無修飾 $Mg(OH)_2$ は反応全期間で常に式(3)が適応できた.一方 $LiCl/Mg(OH)_2$ では,反応初期は試料中の $Mg(OH)_2$ モル分率に依存しないステップ(Step 1)があり,反応後期は式(3)が適応できるステップ(Step 2)となることがわかった.Fig. 1 に,無修飾 $Mg(OH)_2$ および $LiCl/Mg(OH)_2$ の式(3)に基づく Arrhenius プロットを示す. $LiCl/Mg(OH)_2$ は Step 1, Step 2 ともに $Mg(OH)_2$ より も脱水速度が速いことがわかった.Fig. 1 の結果より

各サンプルの頻度因子(A)および活性化エネルギー (E_a) を算出した $(Table\ 1)$. $Table\ 1$ より $LiCl/Mg(OH)_2$ は $Step\ 1$, $Step\ 2$ ともに , $Mg(OH)_2$ よりも活性化エネルギーが低下していることが判明した . これは $Mg(OH)_2$ 表面にLiClを修飾することにより反応場から速やかに H_2O が除去され 脱水反応が促進されたためだと考えられる .

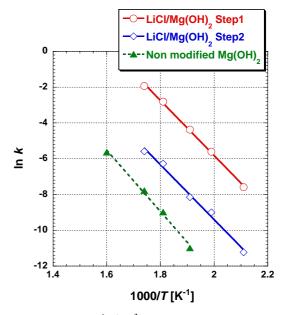


Figure 1 Mg(OH)₂ および LiCl/Mg(OH)₂ (α=0.10)の脱 水反応速度の式(3)に基づく Arrhenius プロット

Table 1 Mg(OH)₂ およびα=0.10 LiCl/Mg(OH)₂ の頻度 因子(A)および活性化エネルギー(E_a)

	$A[s^{-1}]$	$E_{\rm a}$ [kJ mol ⁻¹]
Non modified Mg(OH) ₂	3.27×10^9	143
LiCl/Mg(OH) ₂ (α=0.10) Step1	7.04×10^{10}	128
LiCl/Mg(OH) ₂ (α=0.10) Step2	1.75×10^9	128

4. 結論 $Mg(OH)_2$ 表面を修飾した LiCl が $Mg(OH)_2$ の 脱水反応に関する活性化エネルギーの低下に寄与し , 反応が促進されていることが示唆された .

なお,本研究の一部はNEDO産業技術研究助成事業の支援を受けて行われたものである.

[1] J. Ryu et al., J. Chem. Eng. Jpn., 40, 1281–1286 (2007).
[2] J. Ryu et al., Chem. Lett., 37, 1140–1141 (2008).

^{*}Tel&Fax:03-5734-2964, E-mail: cyliu@nr.titech.ac.jp