P114

Hot Desulfurization by Alkali Carbonates and their Regeneration Characteristic

(名大)○(学) Slamet Raharjo・(名大)(正)植木 保昭・(名大)(正)義家 亮・ (名大)(正)成瀬 一郎*

1. Introduction

 H_2S and COS in gasified gas must be removed almost completely in coal gasification technology. The hot gas desulfurization technique will increase the overall efficiency of the system^[1,2]. This paper studies hot desulfurization and their regeneration characteristic by the molten alkali carbonates (43Na₂CO₃-57K₂CO₃) called MACs as a solvent.

2. Experimental conditions and procedure

Fig. 1 shows the alumina reactor for desulfurization experiments. Gaseous sulfur is analyzed by GC-FPD.

Fig.1. Experimental apparatus

TG combined with GC-FPD is used to study the regeneration characteristic of the used MACs. Simulated used MACs (mainly Na₂S and K₂S) are reacted with CO_2 gas at elevated temperatures. Gaseous sulfur emitted from TG was analyzed by GC-FPD.

3. Results and discussion

Fig. 2 shows that H_2S and COS concentrations in the exhaust gas become lower than 0.5 ppmv during desulfurization experiments at 1173K. Consequently, sulfur species are completely captured by the MACs to form Na₂S and K₂S.

In the regeneration experiments, TG results display the weight increase of sample after introducing CO₂, which indicates the formation of alkali carbonates. The mechanism can be suggested as follows: (M: Na or K)

 $M_2S(s)+2CO_2(g) \rightarrow M_2CO_3(s)+COS(g)$

Fig. 3a and 3b shows the sulfur balance in the TG experiments for Na_2S and K_2S case, respectively. According to Fig. 3a, the regeneration process at 650K seems to be the optimum temperature for Na_2S case. While, 873K seems to be the optimum temperature for K_2S conversion as shown in Fig. 3b. Therefore, these

results suggest that it is possible to regenerate the used MACs by using CO_2 as a regeneration agent.

Fig.3. Sulfur Balance : a) Na_2S case; b) K_2S case

4. Conclusion

MACs were employed as a solvent for hot gas desulfurization of gasified gas at 1173K, which result in complete removal of H₂S and COS. TG results of the regeneration experiment and their sulfur balance analysis show that the used MACs can be regenerated sufficiently by using CO_2 gas.

References

- C. Henderson, Understanding Coal-Fired Power Plant Cycles. IEA Clean Coal Center, 2004.
- 2) E. Furimsky, M. Yumura. Erdol und Kohle-Erdgas-Petrochemie. 1986, (39): 163.
 - * Tel.: +81-52-789-2710; fax: +81-52-789-5123. E-mail: naruse@mech.nagoya-u.ac.jp