P206

脱リグニンバイオマスの酵素糖化

(日揮) ○ (正) 種田 大介※・(法) 上野 義基・(法) 井上 尚久

1. 緒言

酵素法バイオエタノール製造プロセスは、前処理技 術に着目すると、リグニンを積極的に除去するタイプ と、リグニンが残存するタイプに大別される。前者の 代表例はアルカリ蒸解法であり、後者の代表例は希硫 酸や熱水処理法となる。また、希硫酸や熱水処理を施 した後、オゾン処理等によりリグニン含有率を低下さ せる技術も研究開発されている。リグニンを積極的に 除去する前処理プロセスを採用した場合、酵素糖化プ ロセスでは、少ない酵素量で高い糖化率が期待できる ものの、前処理プロセスの設備および運転コストは高 くなる。そのため、そのコスト増に見合うだけのメリ ット(酵素使用量の削減、糖化・発酵・蒸留プロセス のコスト削減)が得られなければならない。本研究は、 前処理技術に脱リグニンプロセスを採用することを前 提に、酵素糖化プロセスの高効率化を図ることを最終 目的としている。今回、脱リグニンバイオマスのモデ ル物質として、ろ紙、アビセル、製紙パルプを用いて、 酵素反応解析に必要となる、脱リグニンバイオマスへ の酵素の吸着特性を調べた。

2. 実験方法

酵素吸着量の評価指標として窒素に着目し、基質残 渣に含まれる窒素含有量をCHN元素分析装置

(EUROVECTOR エレメントアナライザー) で測定した。 酵素糖化には、液状酵素剤であるセルラーゼ SS (ナガセケムテックス) を用いた。糖化液は HPLC で、単糖濃度を分析した。標準酵素糖化条件は、 50° C、50mM 酢酸緩衝液 pH5、基質濃度 $10\sim30$ w/v%。酵素溶液濃度 $0.5\sim10$ v/v%である。また、残渣量は、ろ紙はセルロース 100%と仮定して糖濃度から計算で求めた。

3. 結果と考察

図-1に、ろ紙の酵素糖化における、基質残渣窒素含有率の経時変化を示す。1日糖化後の残渣(糖化率約52%)の窒素含有率は0.75wt%であり、糖化の進行にともない窒素含有率は低下している。即ち、残渣単位重量当たりの酵素吸着量は、糖化が進むにつれ減少していることが分かる。なお、実験で用いた酵素剤の乾燥重量は0.40g/mL、この乾燥固形分中の窒素量は、

6.53wt%であった。従って、酵素剤中の窒素は全て酵素 起源であり、かつろ紙10gに対して添加した酵素剤5mL 中の酵素が全量吸着したと仮定した場合の基質の窒素 含有率は1.10wt%となる。図-2に、添加した酵素中の 全窒素量に対する、残渣に吸着している窒素量の割合 の経時変化を示す。1日糖化後の残渣には0.041gの窒 素が含まれ、この量は供給した酵素中の全窒素0.13g に対して31%の割合になっている。そして酵素糖化9 日目には、窒素基準で、供給した酵素の約3%だけが残 渣に吸着していることが分かる。なお、酵素糖化9日 目の糖化率は約87%であった。基質への酵素吸着量が 低下する原因としては、生成したグルコースによる吸 着阻害や、酵素糖化初期に酵素が吸着しやすい部分が 糖化され、残存基質には酵素が吸着しにくい部分が残 ることなどが考えられる。また、セルラーゼは多種類 の酵素から構成されるため、酵素の組成別の吸着状態 を検討することが今後の課題となる。

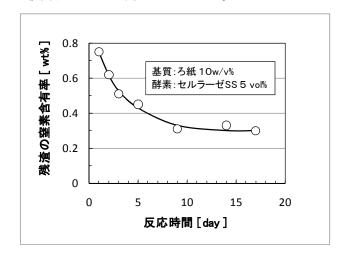


図-1 残渣窒素含有率の経時変化

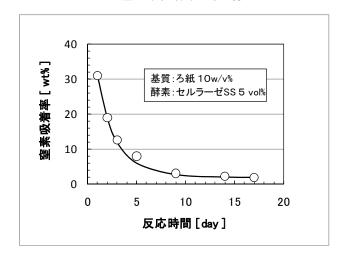


図-2 残渣への窒素吸着率の経時変化

4. 謝辞

本研究は、(独) 新エネルギー・産業技術総合開発機構 (NEDO) 殿の業務委託研究として実施した。

taneda. daisuke@jgc. co. jp