$B:G=*99?7F|;~!'(B2022-06-14 16:59:01
$B$3$NJ,N`$G$h$/;H$o$l(B $B$F$$$k%-!<%o!<%I(B | $B%-!<%o!<%I(B | $B | |
---|---|---|---|
membrane | 5$B7o(B | ||
Nanofiltration | 4$B7o(B | ||
Silica membrane | 4$B7o(B | ||
Molecular Dynamics | 4$B7o(B | ||
membrane separation | 3$B7o(B | ||
ionic liquid | 3$B7o(B | ||
Separation | 3$B7o(B | ||
CO2 separation | 3$B7o(B | ||
Membrane reactor | 2$B7o(B | ||
Fouling | 2$B7o(B | ||
Low-fouling | 2$B7o(B | ||
Pervaporation | 2$B7o(B | ||
zeolite | 2$B7o(B | ||
Reverse osmosis | 2$B7o(B | ||
Polyamide | 2$B7o(B | ||
organosilica membrane | 2$B7o(B | ||
forward osmosis | 2$B7o(B | ||
NF membrane | 1$B7o(B |
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BH/I=7A<0(B | |
---|---|---|---|
11 | $B%*%k%,%N%7%j%+Kl$N?eF)2aFC@-$H%b%G%k2r@O!A5U?;F)!&?;F)5$2=!&>x5$F)2a!A(B | Water Permeation model Organosilica membrane | O |
22 | Enhancing the H2-permselectivity of a composite SiO2-ZrO2 membrane via organic ligand carbonization pore volume control | Acetylacetone Silica-zirconia Carbonization | O |
66 | $BKlJ,N%$*$h$S1v@O$K$h$k%U%#%3%S%j%W%m%F%$%s@:@=%W%m%;%9$N@_7W(B | phycobiliprotein Crossflow filtration purification | O |
89 | $B%7%j%+%S!<%:$rF3F~$7$?B?9& | Dense Pd membrane on porous SUS tube Vacuum-assisted electroless plating Spherical silica particle | P |
91 | $BDcG;EY(BVOC$B2s<}$G$N%$%*%s1UBN%*%k%,%N%7%j%+Kl$NF)2aFC@-(B | organosilica membrane ionic liquid VOC recovery | P |
118 | $BFs;@2=C:AGJ,N%$N$?$a$N(BTetra-PEG$B%$%*%s%2%kGvKl$N3+H/(B | carbon dioxide separation ionic liquid gel membrane | P |
119 | $BI=LL%0%i%U%H=E9gK!$rMQ$$$?Dc%U%!%&%j%s%05U?;F)Kl$N3+H/(B | low-fouling RO membrane surface modification | P |
121 | NIPS$BK!$rMQ$$$?(Bpoly(2-methoxyethyl acrylate)$B%V%l%s%I(BPVDF$BKl$N3+H/(B | NIPS Low-fouling PolyMEA | P |
122 | $B%P%$%*%,%9$+$i9b=cEY?eAG$r@=B$$9$k%7%j%+KlH?1~4o$N3+H/(B | membrane reactor silica membrane steam reforming | P |
127 | Water Flux Enhancement of PVDF Membrane by a Facile Coating Method for Vacuum Membrane Distillation | membrane preparation membrane modification vacuum membrane distillation | O |
128 | Novel method to immobilize zwitterionic materials onto PVDF hollow fiber membrane surface | PVDF hollow fiber modification zwitterionic copolymer anti-fouling | P |
129 | Construction polyphenol microstructure coatings for oil-in-water emulsion separation | nanostructures superwetting membranes oil/water separation | P |
141 | $B%T%e%"%7%j%+(BCHA$BKl$K$h$kM-5!%O%$%I%i%$%IJ,2rMQKlH?1~4o$N3+H/(B | Pure silica CHA membrane Organic hydride Membrane reactor | O |
148 | Development of a high CO2 permeance composite membrane with an ion gel layer | Tough ion gel Composite membrane CO2 separation | O |
166 | $B | Silica membrane Chemical vapor deposition Membrane separation | O |
235 | High performance polyamide nanofiltration membranes enabled by Ag-based nanocapsule-regulated interfacial polymerization process | silver nanofiltration antibiofouling | P |
236 | Graphene quantum dots engineered thin-film nanocomposite membrane for high-performance organic solvent nanofiltration | Graphene quantum dots thin-film nanocomposite membrane organic solvent nanofiltration | P |
237 | $B%"%s%A%U%!%&%j%s%0KlI=LL@_7W$K8~$1$?%I!<%Q%_%s?;DR7?@:L)=$>~K!$N9=C[$HFC@-I>2A(B | antifouling QCM-D dopamine | P |
238 | Zwitterionic copolymer interlayer regulated nanofiltration membrane | Nanofiltration Desalination | P |
248 | Network pore engineering of non-porous bis(triethoxysilyl)propane (BTESP) membranes via fluorine doping and gas permeation properties | Nonporous Organosilica; Bis(triethoxysily)propane Fluorine doping; Network pore tuning | O |
297 | $B%<%*%i%$%HKl$rMxMQ$7$?%(%9%F%k8r49H?1~$NB.EY2r@O(B | Zeolite membrane methanol removal transesterification reaction | O |
311 | $B7W;;2=3X$K$h$k3F | fouling Molecular dynamics Extracellular polymeric substances | P |
319 | $B%"%_%s4^M-%2%kN3;RKl$rEk:\$7$?(BCO2$BJ,N%AuCV$K$h$k(BCO2$BG;=L(B | CO2 separation gel particles membrane | O |
339 | $B%8%"%_%s$X$N%+%k%\%-%74p$NF3F~$K$h$k9bF)?e@-%]%j%"%_%I%J%N$m2aKl$N:n@=(B | nanofiltration polyamide interfacial polymerization | O |
370 | $BKlI=LLJ,6K@-$,Cf4V?e$N@8@.$K5Z$\$91F6A(B : $B7W;;2=3X$K$h$k8!F$(B | Fouling Intermediate Water Molecular Dynamics | P |
388 | $BM-5!%-%l!<%HG[0L;R(B(OCL)$B$rMQ$$$?(BTiO2-SiO2-OCL$BJ#9g?eAGJ,N%Kl$N3+H/(B | hydrogen TiO2-SiO2 organic chelating ligand | P |
395 | $B0[$J$k?eAG7k9g@-41G=4p$rM-$9$k(BUCST$B7?29EY1~Ez@-%$%*%s1UBN$NAjJ,N%5sF0(B | forward osmosis ionic liquid UCST phase separation | O |
431 | Hybrid nickel-coordinated aminosilica membranes for the selective pervaporation of methanol: tuning coordinated structure by a variety of amine types | amine-functionalized organosilica precursors nickel-dopant pervaporation | O |
435 | $BCf6u;eKl$rMQ$$$??e=hM}$m2aAuCV$K$*$1$kN.F0FC@-$N%b%G%k2=(B | Modeling simulation water treatment filtration | O |
451 | Forward osmosis thin film composite membrane surface modification using tris(2-aminoethyl)amine (TAEA) for enhanced ammonium recovery | Foward Osmosis Thin film composite membrane Resource recovery | P |
455 | Fabrication of micro-sized artificial oxygen carriers with tunable morphology by SPG membrane emulsification techniques | Microcapsule Oxygen carrier SPG membrane emulsification | P |
475 | TiO2-ZrO2-$BM-5!%-%l!<%HG[0L;R(B(OCL)$BJ#9gKl$K$*$1$k%J%N_I2aFC@-$K5Z$\$9(BOCL$B$N1F6A(B | TiO2-ZrO2 Organic solvent OCL | P |
482 | $B?75,$JO;J}>=7?;@2=%?%s%0%9%F%sKl$K$h$k%,%9J,N%$N2DG=@-D4::(B | Hexagonal tungsten oxide Membrane Separation | O |
509 | $BJ,;RF0NO3X%7%_%e%l!<%7%g%s$K$h$k5,B'@-!?%"%b%k%U%!%9;@2=%0%i%U%'%sKl$K$*$1$k5$BNF)2a5!9=$N2rL@(B | Graphene oxide Molecular dynamics simulation Gas permeation | P |
518 | $B?;F)05Jd=u5U?;F)$rMQ$$$?1v2=%"%s%b%K%&%`?eMO1UJ,N%%W%m%;%9$N9=C[(B | Reverse Osmosis Separation Membrane | P |
532 | Silver dissolution from Ag-TiO2 membrane in saline condition (Yamaguchi U.) ($B3X(B)$B!{(BChe Abdul Rahim Azzah Nazihah$B!&(B | Photocatalyst Silver nanoparticle Dissolved organics | O |
568 | PVDF$BCf6u;eKl$rMxMQ$7$?(Bp-$B%K%H%m%U%'%N!<%k$NKlCj=P(B | Hollow fiber membrane extraction p-nitrophenol | P |
589 | CO2$BJ,N%$K$*$1$kMWAG%W%m%;%9$NJ,N%@-G=$H7P:Q@-$K4X$9$k8!F$(B | Separation Membrane Carbon dioxide | P |
590 | $B%U%CAG4^M-%]%j%^!<$N%3!<%F%#%s%0$K$h$kJ#9gKl$N:n@=$H%J%N$m2aJ,N%(B | Fluorine contain polymer NF membrane organic solvent separation | P |
593 | $B%+!<%\%s%j%5%$%/%k$K8~$1$?M-5!1UBN5U?;F)J,N%$N2DG=@-(B | Silica membrane Reverse osmosis Organic liquids | P |
594 | $B?eAGF)2a%7%j%+Kl$N?e>x5$BQ5W@-6/2=(B | Silica membrane Steam durability Hydrogen permeance | P |
597 | $B9b299b05?e>x5$J70O5$2<$K$*$1$k(BNa-ZSM-5$B$NBQ5W@-$N8!F$(B | zeolite membrane separation | P |
605 | $B>.7?4I>uH?1~4o$rMQ$$$?(Bsilicalite-1$BKl$N?WB.9g@.$K$*$1$k9g@.>r7o$N1F6A(B | Rapid synthesis Silicalite-1 membrane Pervaporation | P |
606 | Fischer-Tropsch$B9g@.$KBP$9$k%<%*%i%$%HKl$N1~MQ(B | Fischer-Tropsch synthesis membrane ZSM-5 | P |
621 | $B%<%*%i%$%HKl$N@5?;F)FC@-$K4X$9$k8!F$(B | zeolite membrane separation forward osmosis | P |
632 | $B%J%N$m2a$K$h$k%"%s%b%K%"J,N%2aDx$NHsJ?9UJ,;RF0NO3X7W;;(B | Nanofiltration Diffusion Non-equilibrium Molecular Dynamics | P |
644 | $BL)EY:9$r?d?JNO$H$9$k%]%j%"%_%IKl$K$*$1$k=`HsJ?9UF)2a%7%_%e%l!<%7%g%s(B | Molecular dynamics Polyamide Quasi-nonequilibrium permeation simulation | P |
650 | $B7W;;2=3X$rMQ$$$?(BMixed matrix$BKl$K$*$1$k(BCO2$BF)2a5!9=$N2rL@(B | Mixed matrix membrane CO2 separation Non equibrium molecular dynamics | O |
662 | $BHs6K@-MOG^$NJ,;6!&6E=85sF0$,%"%/%j%l!<%HAG:`$NBQ%U%!%&%j%s%0@-G=$KM?$($k1F6A(B:$B7W;;2=3XE*2r@O(B | Acrylate Materials Antifouling Properties Molecular Dynamics | O |
680 | Effect of toluene vapor concentration on gas separation properties of carbon molecular sieve membranes modified by toluene CVD method | Carbon molecular sieve membranes Toluene vapor modification Gas separation | P |