$B=);3(B $BBY?-!JEl3$Bg3X!K!&C^:,(B $BFX90!JBgM[F|;@(B($B3t(B)$B!K!&LnED!!M%!JAa0pEDBg3X!K(B |
CVD$BEy$N%I%i%$%W%m%;%9$O%(%l%/%H%m%K%/%9!$B@M[EECS!$(BMEMS$B!$5!G=@-%3!<%F%#%s%0Ey$NJ,Ln$K$*$$$F=EMW$J4p445;=Q$H$J$C$F$$$k!#K\%7%s%]%8%&%`$G$O!$(BCVD$B$H$=$NB>$N%I%i%$%W%m%;%9$rMxMQ$7$?GvKl7A@.!$HyN3;R9g@.!$Hy:Y2C9)$K$*$$$FH?1~9)3XE*8+CO$h$jH?1~%a%+%K%:%`$rM}2r$7!$O@M}E*$G8zN(E*$JH?1~%W%m%;%9$dH?1~AuCV$N3+H/$rL\;X$75DO@$9$k$3$H$rL\E*$H$7$^$9!#$J$*!$M%=($JH/I=$r$5$l$?
$B:G=*99?7F|;~!'(B2018-12-17 03:35:01
$B$3$NJ,N`$G$h$/;H$o$l(B $B$F$$$k%-!<%o!<%I(B | $B%-!<%o!<%I(B | $B | |
---|---|---|---|
CVD | 5$B7o(B | ||
cutting tool | 2$B7o(B | ||
hard coating | 2$B7o(B | ||
reaction kinetics | 1$B7o(B |
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BH/I=7A<0(B | |
---|---|---|---|
44 | [$B>7BT9V1i(B] $B%0%i%U%'%s$r$O$8$a$H$9$kFs | graphene epitaxial growth hexagonal boron nitride | O |
113 | CsxWO3 $B%J%NN3;R$N2P1jJ.L89g@.$H8w3XFC@-(B | cesium tungsten bronze flame-assisted spray pyrolysis aerosol | O |
142 | 4H-SiC CVD$B%H%l%s%AKd9~@.D95!9=5Z$S(BHCl$B%,%9E:2C8z2L$N8!F$(B | 4H-SiC trench filling HCl | O |
226 | $B%"%_%N%7%i%s7O(BSiO2-ALD$B$NH?1~B.EY2r@O(B ($BEl5~%(%l%/%H%m%s%F%/%N%m%8!<%=%j%e!<%7%g%s%:(B) ($B@5(B)$B!{@n>e(B $B2m?M!&(B | ALD aminosilane reaction kinetics | O |
243 | [$BE8K>9V1i(B] $B@\?(J,2rH?1~$K$h$k3h@- | HWCVD Thin film Surface modification | O |
330 | [$B>7BT9V1i(B] $B%W%i%:%^%(%C%A%s%0$K$*$1$k(BSiO2/Si$B3&LL=`0L$N@8@.$H@)8f(B ($B%=%K!<%;%_%3%s%@%/%?%^%K%e%U%!%/%A%c%j%s%0(B) $B!{D9H*(B $BOBE5!&(B | Plasma Etching Damage | O |
336 | $BIbM7?(G^7A@.$N29EY>l@)8f$HC1AX%+!<%\%s%J%N%A%e!<%V$N5$Aj9g@.(B | single-wall carbon nanotube reaction field control floating catalyst chemical vapor deposition | O |
468 | [$BE8K>9V1i(B] $BG.(BCVD$BK!$rMQ$$$?@Z:o9)6qMQ9E | CVD Cutting tool Hard coating | O |
561 | $BG.(BCVD$BK!$K$h$k9b(BAl$BAH@.(Bfcc-TiAlN$BKl$N9g@.(B(2) | CVD TiAlN cutting tool | O |
576 | Ag$BN3;R$H(BTiO2$BN3;R$NBO@Q$G:n@=$7$?J#9gGvKl$N2D;k8w>H | PVD PECVD nanoparticle | O |
685 | Supercritical dying and impregnation for fabrication of porous carbon electrode on Li-O2/CO2 battery | Li- O2/CO2 battery supercritical carbon dioxide ionogel binder | O |
832 | $B8:05G.(BCVD$BK!$G:n@=$7$?%j%A%&%`%I!<%W;@2=0!1tGvKl$NHfM6EEN((B | CVD Lithium-doped Zinc Oxide Ferroelectric | O |
879 | $B%_%9%H(BCVD$BK!$K$h$k9bIJ | Mist CVD ZnO reaction mechanism | O |
882 | $B%"%k%-%k%"%k%_%K%&%`$rMQ$$$?%"%k%_%JKl$N?75,9g@.K!$N3+H/(B | CVD alkyl aluminum alumina | O |
905 | $BD6NW3&N.BNGvKlBO@Q$K$h$k9b%"%9%Z%9%HHf9=B$$X$NF<$N6Q0l@=Kl;X?K(B | Supercritical fluid deposition Diffusion coefficient Kinetics | O |
919 | SiC-CVI$B%W%m%;%9$K$*$1$kI=LLH?1~2aDx$NM}O@8!F$(B | SiC CVI Surface Reaction | O |
937 | RF$B%W%i%:%^(BCVD$B$K$h$k(BTiB$B7O9E | hard coating plasma CVD TiBCN | O |
978 | $BN22=?eAGE:2C$,G.J,2rC:AG(BCVD$B$K5Z$\$91F6A(B | CVD Carbon Hydrogen sulfide | O |
1058 | Tetracene thin film formation for organic photovoltaics by temperature-driven supercritical fluid deposition | Temperature-driven Supercritical Fluid Deposition Crystallization Tetracene | O |