$BDT8}(B $BBsLi!J6bBtBg3X!K!&Cf3@(B $BN4M:!JAa0pEDBg3X!K!&ED4,(B $B9'7I!JEl5~9)6HBg3X!K!&@PHt(B $B9(OB!J72GOBg3X!K!&snF#(B $B>fLw!JBg:eI\N)Bg3X!K!&CfHx(B $B8x?M!JElMN%(%s%8%K%"%j%s%0(B($B3t(B)$B!K(B |
$B9b8zN($J%(%M%k%.!
$B:G=*99?7F|;~!'(B2018-12-17 03:35:01
$B$3$NJ,N`$G$h$/;H$o$l(B $B$F$$$k%-!<%o!<%I(B | $B%-!<%o!<%I(B | $B | |
---|---|---|---|
PEFC | 3$B7o(B | ||
Polymer electrolyte fuel cell | 3$B7o(B | ||
Ammonia | 2$B7o(B | ||
graphene oxide | 2$B7o(B | ||
solid oxide fuel cell | 2$B7o(B | ||
direct methanol fuel cell | 2$B7o(B | ||
Plasma | 2$B7o(B | ||
electrodeposition | 2$B7o(B | ||
phase change | 2$B7o(B | ||
fuel cell | 2$B7o(B | ||
Electrocatalyst | 2$B7o(B | ||
Structure of diffusion layer | 1$B7o(B |
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BH/I=7A<0(B | |
---|---|---|---|
45 | $B?e>x5$2~ | palladium membrane steam reforming membrane reactor | P |
135 | $B;@2=%0%i%U%'%sKl$NG3NAEECSEE2r | graphene oxide fuel cell electrolyte membrane | P |
136 | $B%;%j%"7OC4BN$X$N%$%*%s%S!<%`>H | Direct methanol fuel cell Anode catalyst Ion beam | P |
160 | $BIt:`8|$_$rJQ99$5$;$?>l9g$N9b29>r7o(BPEFC$BC1%;%kFbEAG.8=>]2r@O(B | PEFC Heat Transfer Modeling High Temperature Condition | P |
208 | $B4T85;@2=%0%i%U%'%sC4BN$rMQ$$$?%a%?%N!<%k;@2=EE6K?(G^(B | graphene oxide direct methanol fuel cell electrocatalyst | P |
270 | $BAj3&LLH?1~$K$*$1$k%"%s%b%K%"9g@.$H3h@-2=CbAG5$Aj$N2r@O(B | Ammonia Plasma Activated nitrogen | P |
272 | $BIt:`8|$_$,9b29H/EE(BPEFC$BC1%;%kFbG.!&J* | PEFC High Temperature Operation Heat and Mass Transfer | P |
275 | $BD>@\7AG3NAEECS$KE,$7$?3H;6AX9=B$$N8!F$(B | DFAFC Structure of diffusion layer pore size distribution | P |
278 | $B%Z%m%V%9%+%$%H4XO"9=B$$N2a>j;@AG!&;@AG7gB;$H%W%m%H%sEAF3@-$N4X78(B | SOFC perovskite electrolyte | P |
279 | $B8GBN;@2=J*G3NAEECS$NG3NA6K$X$N%+!<%\%s%J%N%A%e!<%V$ND>@\9g@.K!$N8!F$(B | carbon nanotube solid oxide fuel cell direct growth | P |
281 | $B%"%s%b%K%"$r9g@.$9$kAj3&LLH?1~>l$X$N;g308w>H | Ammonia UV Plasma | P |
285 | Sn$BC4;}?(G^$rMQ$$$?:]$N7P;~E*(BCO2$BEE5$2=3X4T855sF0(B | Formic acid Electrochemical reduction Energy carrier | P |
293 | $BG3NAEECS?(G^$K$*$1$kC4BN8z2L$N8&5f(B | chemisorption fuel cell catalyst support effect | P |
407 | Physical and electrochemical characterizations of LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries prepared by spray pyrolysis with heat treatment | Cathode Lithium ion batteries Spray pyrolysis | P |
408 | $B8GBN;@2=J*7AG3NAEECS$N5;=Q5Z$S7P:Q@-I>2A | solid oxide fuel cell techno-economic assessment cell design | P |
442 | Cu/Ni$BFs857O@QAXEE6K>e$K$*$1$kFs;@2=C:AG$NEE5$2=3X4T85H?1~(B | CO2 reduction Binary Cu/Ni stacked electrodes Ni electrodeposition | P |
446 | $B;0Ec<0%1%_%+%k%k!<%WG3>F%7%9%F%`$K$*$1$k(BCa$B2~ | Chemical-looping combustion Hydrogen production CO2 capture | P |
517 | $B?M9)CNG=$K$h$k%j%A%&%`7OEECS$N2r@O%Q%i%a!<%?$N?d;;(B | Lithium-air battery machine learning Polarization curve | P |
552 | Proton conductivity of Nafion membranes in HT-PEFC application | Membrane characterization PEFC Conductivity | P |
575 | $BB?CJ7?AjJQ2=C_G.<0G.8r49%7%9%F%`8~$1C_G.:`(B($B;iKC;@(B)$B$NG.!&J*M}FC@-(B | Phase change Latent heat storage Thermo-physical property | P |
583 | $BDc0LG.%(%M%k%.!<2s<}8~$1FsCJ7?AjJQ2=C_G.<0G.8r494o$N@-G=I>2A(B | phase change thermal storage heat exchange | P |
598 | PEFC$BMQDc(BEW$B= | Polymer electrolyte fuel cell Pore-filling membrane Low EW perfluorosulfonic acid polymer | P |
609 | $B%j%A%&%`6u5$EECS$NEECSFC@-$KBP$9$kEE6K?(G^$NE:2C8z2L(B | Lithium air battery Cell performance Electrode catalysis | P |
616 | $B6bB0%J%NN3;RJ,;6%+!<%\%s%J%N%[!<%s$N?eAG5[Ce$K4X$9$k8&5f(B | carbon nanohorn hydrogen adsorption | P |
702 | LiB$BEE6K9=B$@_7W$N$?$a$N= | lithium ion battery numerical simulation Porous electrode | P |
731 | $BD62;GHL82=K!$rMQ$$$?%Z%m%V%9%+%$%HB@M[EECSMQGvKl$N9=B$@)8f(B | Perovskite Solar Cells Thin Films Ultrasonic Spray Method | P |
741 | $B8GBN%"%k%+%jG3NAEECS$K$*$1$k%.;@;@2=MQ(BPd$B7O%J%NN3;R?(G^$N3+H/(B | Solid alkaline fuel cell Formate oxidation Electrocatalyst | P |
782 | Electrochemical Promotion of Ammonia Synthesis with Iron catalyst on Barium Cerate by Incipient Wetness Impregnation Method | Ammonia Electrosynthesis Iron Based Catalyst Electrochemical Promotion | P |
798 | $B%+!<%\%s%"%m%$?(G^$rMQ$$$?;@(B-$B%"%k%+%j%O%$%V%j%C%I7?G3NAEECS$NH/EEFC@-I>2A(B | carbon alloy catalysts acid-alkaline hybrid fuel cell | P |
821 | 3D simulation of solid state battery cathode considering the interfacial resistance | Solid state battery Active material coating Interfacial resistance | P |
834 | $BEE@OK!$rMQ$$$?N22=E4$N9g@.$HA}467?B@M[EECS$X$N1~MQ8!F$(B | iron sulfide electrodeposition | P |
855 | $BEE@OK!$K$h$k(BZnS$B$N:n@=$H(BCu$B%I!<%T%s%0$K$h$k%P%s%I9=B$$N@)8f(B | ZnS photocatalyst electrodeposition | P |
872 | Fabrication of a Co/N-doped carbon by using Co/2-mithylimidazole anchoring on ion exchange resin as efficient oxygen reduction electrocatalyst | oxygen reduction reaction Co/N-doping ion exchange resin | P |
938 | $B?e0\F0$KCeL\$7$?(BPt-Fe$B%J%NN3;RO"7k?(G^$N(BPEFC$B%+%=!<%IEE6K$K$*$1$k9=B$@)8f(B | Carbon free Polymer electrolyte fuel cell Membrane electrode assembly | P |
992 | $B9bC_G.L)EY2=$K8~$1$?(BLiOH$BN3;RAX$N?eOBC&?e5sF0$NI>2A$K4X$9$k8&5f(B | Hydration / Dehydration Chemical heat storage Lithium hydroxide | P |
995 | $BD6NW3&N.BNCf$G:n@=$7$?G.9E2=@- | supercritical fluid activated carbon EDLC | P |
1019 | $B?eAGCyB"6bB0$K$*$1$k0[>oH?1~$N4QB,$H$=$N%a%+%K%:%`$N8!F$(B | anomalous reaction hydrogen-storage metal | P |
1046 | $B9b8zN(B@M[EECS$NDc%3%9%H:n@=$K8~$1$?Hs%/%j!<%s%k!<%`4D6-$K$*$1$k%&%'%O@\9g(B | semiconductor wafer bonding solar cell silicon | P |
1048 | $B?(G^AXCf$G%3%"%7%'%k2=H?1~$r9T$&(BPEFC$BMQDcGr6bEE6K$N?75,:n@=K!$N3+H/(B | Polymer electrolyte fuel cell Cu-UPD core-shell | P |