A$B2q>l(B | |||||
---|---|---|---|---|---|
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$B2=3X;:6H5;=Q%U%)!<%i%`(B $B!cpJs4pHW@0M}$H;:3X8xL1$X$NH/?.$K8~$1$F!A!d(B | |||||
(9:00$B!A(B12:00)$B!!(B($B:BD9(B $BCf3@(B $BN4M:(B) | |||||
A201 | [$B0MMj9V1i(B]$B | Energy Systems Future Society | F-2 | 465 | |
A202 | [$B>7BT9V1i(B]$B | Energy Systems Future Society | F-2 | 469 | |
A204 | [$B>7BT9V1i(B]$B@=E4=j$N>J%(%M5;=Q$H$=$NE8K>(B | Energy Systems Future Society | F-2 | 472 | |
A206 | [$B>7BT9V1i(B]$B=E2=3X;:6H$K$*$1$k%(%M%k%.! | Energy Systems Future Society | F-2 | 473 | |
A208 | $BAm9gF$O@(B:$B | Energy Systems Future Society | F-2 | 476 | |
B$B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$B2=3X;:6H5;=Q%U%)!<%i%`(B $B!c;:3XO"7H$K$h$k5;=Q$N%*!<%W%s%$%N%Y!<%7%g%s!d(B | |||||
(9:40$B!A(B12:00)$B!!(B($B:BD9(B $BJuED(B $B63G7(B) | |||||
B203 | [$B>7BT9V1i(B]$BBg:e%,%9%0%k!<%W$,?d?J$9$k%*!<%W%s%$%N%Y!<%7%g%s!!!]%0%m!<%P%k!&%*!<%W%s!&%$%N%Y!<%7%g%s$,@Z$jBs$/?7$?$J;:3XO"7H$N%+%?%A!](B | open innovation osakagas cooperation | F-2 | 421 | |
B205 | [$B0MMj9V1i(B]$B2=3X9)3X2q$,Ds6!$9$k2]Bj2r7h7?%3%s%=!<%7%"%`(B | industrial-academic cooperation technical innovation problem solution | F-2 | 439 | |
B206 | [$B0MMj9V1i(B]$B5~ETBg3X$G$N;:3XO"7H!A%^%$%/%m2=3X@8;:8&5f%3%s%=!<%7%"%`!A(B | industrial-academic cooperation technical innovation problem solution | F-2 | 462 | |
B207 | [$B0MMj9V1i(B]$B%9%Q%$%i%k%"%C%W7?;:3XO"7H!!!]ElKLBg3X$ND6NW3&5;=Q$rNc$H$7$F!](B | industrial-academic cooperation technical innovation open innovation | F-2 | 490 | |
B208 | $B%Q%M%kF$O@!A;:3XO"7H$K$h$k%*!<%W%s%$%N%Y!<%7%g%s!A(B | industrial-academic cooperation open innovation panel discussion | F-2 | 510 | |
C$B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$B%7%9%F%`!&>pJs!&%7%_%e%l!<%7%g%s(B | |||||
(9:00$B!A(B10:20)$B!!(B($B:BD9(B $BA%DE(B $B8x?M(B) | |||||
C201 | $B%=%U%H%;%s%59=C[$K$*$1$kJQ?t4V$NAj4X4X78$K4p$E$$$?8zN(E*$JJQ?tA*Br | Variable Selection Partial least squares Correlation | 6-d | 25 | |
C202 | $B%P%C%A<02=3X%W%i%s%H$K$*$1$k=hM};~4VCY1d%j%9%/$NI>2AJ}K!$K$D$$$F(B | Delay Risk Evaluation PERT QE(:Quantifier elimination) | 6-f | 757 | |
C203 | $B5$1U%9%i%0N.$rM-$9$k@QAX7?%^%$%/%m%j%"%/%?$N:GE,@_7W(B | Gas-liquid microreactor Slug flow Optimal design | 6-g | 280 | |
C204 | $BE}9g3X$K$*$1$k%W%m%0%i%`%^%M%8%a%s%H;Y1g$N$?$a$N%"%8%c%$%k;W9M$H%P%i%s%9!&%9%3%"%+!<%I$NE,MQ(B | Program Management Agile Balanced Scorecard | 6-g | 302 | |
(10:20$B!A(B11:20)$B!!(B($B:BD9(B $B;32<(B $BA1G7(B) | |||||
C205 | $B%l!<%Y%s%7%e%?%$%s5wN%$K4p$E$/O":?%"%i!<%`$NN`;w@-2r@O(B | Plant Alarm System Sequential Alarm Levenshtein Distance | 6-a | 82 | |
C206 | $BG@9)2#CG7?%W%m%;%9%b%G%j%s%0$K$h$kAFE|!&%P%$%*%(%?%N!<%kJ#9g@8;:$N6/2=(B | interdisciplinary approach bioethanol modeling | 6-b | 786 | |
C207 | $BD62;GHJ,2r%W%m%;%9$NB.EYDj?t?d;;%b%G%k(B | ultrasonic degradation rate constant kinetic analysis | 6-c | 217 | |
(11:20$B!A(B12:20)$B!!(B($B:BD9(B $B55;3(B $B=(M:(B) | |||||
C208 | $B%G!<%?L)EY$r9MN8$7$?%=%U%H%;%s%5!<%b%G%k$NM=B,8m:9$N?dDj(B | soft sensor prediction error applicability domain | 6-d | 11 | |
C209 | $BL\E*JQ?t$NB,Dj2s?t:o8:$*$h$S%=%U%H%;%s%5!<%b%G%k$NNt2=Dc8:$X$N;n$_(B | soft sensor process monitoring predictive accuracy | 6-d | 112 | |
C210 | $B | experimental design applicability domain QSPR | 6-e | 102 | |
D$B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$B:`NA!&3&LL(B | |||||
(9:00$B!A(B10:00)$B!!(B($B:BD9(B $BJ?Bt(B $B@t(B) | |||||
D201 | $B9E?eCf$K$*$1$kC:;@%+%k%7%&%`@O=P7ABV$KM?$($k%*%k%H%j%s;@1v$N1F6A(B | calcium carbonate scale inhibition heat exchanger | 12-g | 9 | |
D202 | $B9b05NO2<$N1tC_EECS$N9bB.= | High Pressure Crystallization Lead Acid Battery | 12-g | 66 | |
D203 | $BE:2CJ*B8:_2<$K$*$1$k%"%9%Q%i%.%s;@$N7k>=@.D9(B | Crystal growth Amino acid Crystal structure | 12-g | 68 | |
(10:00$B!A(B11:00)$B!!(B($B:BD9(B $BFs0f(B $B?8(B) | |||||
D204 | $BIOMOG^>=@O$K$*$1$k3KH/@8$H3H;68=>]$K4X$9$k4pAC8&5f(B | Anti-solvent crystallization Nucleation Mass transfer | 12-g | 137 | |
D205 | DFR$B>=@OAuCV$K$h$k(BL-$B%0%k%?%_%s;@$NB?7A@)8f(B | Crystallization Polymorphism Control DFR Heat Exchanger | 12-g | 296 | |
D206 | $B=`0BDjNN0hB,DjCM$KBP$9$k7k>=N3;R8!=P4o46EY$*$h$S2rA|EY$N1F6A(B | Batch crystallization MSZW Simulation | 12-g | 310 | |
(11:00$B!A(B12:00)$B!!(B($B:BD9(B $BEZ4t(B $B5,?N(B) | |||||
D207 | $B=`0BDjNN0hB,Dj$HBT$A;~4VB,Dj$+$i$N0l | Batch crystallization Primary nucleation parameter Simulation | 12-g | 313 | |
D208 | $BD62;GHM6F33K2=$rMQ$$$?>=@O@)8f(B | Ultrasonic wave Nucleation Control | 12-g | 323 | |
D209 | $BKlJ,N%$rMQ$$$?G;=L$K$h$k(BCaOx$B$N3K2=!&@.D95sF0$N4Q;!(B | Calcium Oxalate membrane separation crystallization | 12-g | 443 | |
E$B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$B:`NA!&3&LL(B | |||||
(9:00$B!A(B10:00)$B!!(B($B:BD9(B $B3@2V(B $BbC?M(B) | |||||
E201 | V2O5-H2WO4-KPO3-Sb2O3$B7OIuCe2C9)MQ1t%U%j!<%,%i%9$NBQ?e@-5Z$SIuCe6/EY$NI>2A(B | V2O5-H2WO4-KPO3-Sb2O3 glass sealing strength water durability | 12-k | 592 | |
E202 | $B | zeolite beta seed-assisted synthesis hollow structure | 12-k | 123 | |
E203 | $B%]%j%W%m%T%l%sAG:`$N4D6-$KM%$7$$L5EE2r$a$C$-K!$N3+H/!!!=%W%m%;%C%7%s%0$H$a$C$-@\Ce6/EY!=(B | Electroless Plating Super-critical CO2 Polypropylene | 12-k | 350 | |
(10:00$B!A(B11:00)$B!!(B($B:BD9(B $BHu8}(B $B7r;V(B) | |||||
E204 | $B9b5!G=@-:`NA$N9g@.$rL\;X$7$?%"%k%3%-%74p8r49H?1~$rMQ$$$??75,%1%$AG86NA$N3+H/(B | raw silicon material glycol-modified silane | 12-k | 370 | |
E205 | $B?75,(B(Ba,Sr)-Al-S$B7O%A%*%"%k%_%M!<%H$NC5:w$H(BEu2+$BIj3h$K$h$kH/8wFC@-I>2A(B | phosphor thioaluminate | 12-k | 386 | |
E206 | $B?75,2D;k8w1~Ez@-8w?(G^(BCu3xLa1-xTa7O19$B$N3+H/$H$=$N9b3h@-2=(B | photocatalyst visible light hydrogen | 12-k | 730 | |
(11:00$B!A(B12:00)$B!!(B($B:BD9(B $B3@2V(B $BbC?M(B) | |||||
E207 | W/O/W$BJ,;67O$rMxMQ$9$k%^%0%M%?%$%HN3;R$ND4@=(B | dispersion magnetite interfacial reaction | 12-k | 586 | |
E208 | $B5?;wBN1U$+$i$N2=9gJ*@8@.AuCV$N:n@=$H:.9gFC@-I>2A(B | mixing characterization calcium phosphate simulated body fluid | 12-k | 660 | |
E209 | $B3&LL3h@-:^B8:_2<$G$N%$%*%s1UBN$+$i$J$k%(%^%k%7%g%s$NFC@-(B | ionic liquid surfactant emulsion | 12-b | 737 | |
F$B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$B:`NA!&3&LL(B | |||||
(9:00$B!A(B10:00)$B!!(B($B:BD9(B $BD>9>(B $B0l8w(B) | |||||
F201 | $B%3%l%9%F%j%C%/1U>=%3%"%7%'%k%(%^%k%7%g%s$N2=3X%;%s%5!<$H$7$F$N1~MQ(B | cholesteric liquid crystal core shell emulsion chemiluminescence | 12-f | 67 | |
F202 | $B%U%)%H%/%m%_%C%/?'AG$r8GDj2=$9$k%_%/%m%9%U%'%"$NJI:`@_7W$,?'AGMO=P$K5Z$\$98z2L(B | microsphere photochromic dye pigment release | 12-f | 228 | |
F203 | Paracoccus denitrificans$B$r8GDj2=$7$?B?9&2A(B | Denitrification Microcapsule Porous | 12-f | 244 | |
(10:00$B!A(B11:00)$B!!(B($B:BD9(B $B5HED(B $B>;90(B) | |||||
F204 | $BJ,;R=89gBN$rCr7?$KMQ$$$?5e>u%7%j%+%J%N%+%W%;%k$ND4@=(B | nanocapsule silica molecular aggregates | 12-f | 259 | |
F205 | $B%$%s%/%8%'%C%H%W%j%s%?$rMQ$$$?6Q0l7BHyN3;R$N:n@=$HFs=E(BDDS$B$X$N1~MQ$K8~$1$?4pAC8!F$(B | inkjet printer microparticle tandem DDS | 12-f | 297 | |
F206 | Au$B%J%NN3;R$rMQ$$$?(BPickering$B%(%^%k%7%g%s$ND4@=>r7o(B | Pickering emulsion nanoparticle aggregation | 12-f | 587 | |
(11:00$B!A(B12:00)$B!!(B($B:BD9(B $B4_ED(B $B>;9@(B) | |||||
F207 | Copper-free click chemistry$B$rMQ$$$?:F@80eNEMQ%^%$%/%m%+%W%;%k$NAO@=(B | Copper-free click chemistry Microcapsule ECM-like scaffold | 12-f | 601 | |
F208 | $B%"%_%N%7%i%s!>%"%k%.%s;@J#9g%+%W%;%k$ND4@=$H8w?(G^!?9ZAGJ#9g7??M9)8w9g@.$X$N1~MQ(B | microcapsule enzyme photocatalyst | 12-f | 665 | |
F209 | $B4JJX$JF}2=K!$rMQ$$$?;i | lipid vesicles entrapment yield W/O emulsion | 12-f | 668 | |
G$B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$B9q:]%7%s%]%8%&%`(B $B!cN3;R!&N.BN%W%m%;%98&5f$K$*$1$k3W?7E*%9%F%C%W!d(B | |||||
(9:00$B!A(B10:00)$B!!(B($B:BD9(B $BB@ED(B $B8w9@(B) | |||||
G201 | [$B>7BT9V1i(B] Simulation of Processes containing Bubble, Drops and Particles | Computational Fluid Dynamics Dispersed Flow Simulation | K-1 | 26 | |
G202 | [$B>7BT9V1i(B] Hydrodynamic Interactions of Self-propelled Swimmers | active particles diffusion hydrodynamic | K-1 | 27 | |
G203 | [$B>7BT9V1i(B] Formation of a laminar compound jet and its breakup into compound droplets | compound jet compound drop hollow drop | K-1 | 28 | |
(10:00$B!A(B10:40)$B!!(B($B:BD9(B $B5H@n(B $B;KO:(B) | |||||
G204 | [$B>7BT9V1i(B] Transport of Passive and Non-Passive Particles in Chaotic Flow | transport passive chaotic flow | K-1 | 93 | |
G205 | [$B0MMj9V1i(B] Solid Particles Distribution on Dished Base of a Stirred Tank Using Conventional Impellers and Novel SATAKE Impellers | Mixing Solids Suspension Dished Based Tank | K-1 | 95 | |
(10:40$B!A(B11:40)$B!!(B($B:BD9(B $B8eF#(B $BK.>4(B) | |||||
G206 | [$B>7BT9V1i(B] Nanoparticle Synthesis and Their Functionalization in the Colloidal Method | Nanomaterial processing liquid-phase synthesis Spray route | K-1 | 85 | |
G207 | [$B0MMj9V1i(B] Numerical and experimental study of effect of dry powder inhaler design on the aerosolisation of the carrier-based formulation | dry powder inhalers device design computational fluid dynamics | K-1 | 215 | |
G208 | [$B0MMj9V1i(B] Development of catalytic coal gasification process to produce FT-process suitable synthesis gas | Coal gasification synthesis gas catalyst | K-1 | 330 | |
(11:40$B!A(B12:20)$B!!(B($B;J2q(B $B>e%N;3(B $B<~(B) | |||||
G209 | [$B%"%8%"9q:]>^(B]Numerical Simulation of Multiphase Stirred Reactors/Crystallizers and Industrial Applications | stirred reactor crystallizer numerical simulation | K-1 | 341 | |
H$B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$B4D6-(B | |||||
(9:00$B!A(B10:00)$B!!(B($B:BD9(B $BCf@P(B $B0l90(B) | |||||
H201 | $B | Arsenic Contaminated soil Dissolution | 13-f | 193 | |
H202 | $B;@@->r7o2<$K$*$1$kEZ>mG4EZ$HC10l5Z$SJ#9g=E6bB0$N0\F0@-I>2A(B | heavy metal soil acidification clay | 13-f | 638 | |
H203 | $BGQ%"%9%Y%9%HM3Mh$N(BMg-Al$B7OAX>uJ#?e;@2=J*$H$=$NI>2A(B | Layered Double Hydroxides Asbestos Water purification | 13-e | 655 | |
(10:00$B!A(B11:00)$B!!(B($B:BD9(B $BFs5\(B $BA1I'(B) | |||||
H204 | $BF | hydrothermal oxidation chlorophenol Fenton-type reaction | 13-b | 118 | |
H205 | $B;@2=F<(B($B-5(B)$B$*$h$S;@2=F<(B($B-6(B)$B$r?(G^$H$9$k%/%m%m%U%'%N!<%k$N?eG.;@2=J,2r(B | hydrothermal oxidation chlorophenol copper oxide | 13-b | 125 | |
H206 | $B4D6-J]A4$K8~$1$?4D6-5;=QZ;v6H$N | Environmental Technology Verification Conservation of Environment | 13-i | 304 | |
(11:00$B!A(B12:00)$B!!(B($B:BD9(B $B:4F#(B $BM}IW(B) | |||||
H207 | $B30G.<0?eJ?2sE>1_E{O'$rMQ$$$?J| | Biomass Pyrolysis Decontamination | 13-i | 359 | |
H208 | $BCO0h>r7o$rH?1G$7$?=|@w7W2h$N:vDj(B | Decontamination Radioactive materials Simulation | 13-i | 667 | |
H209 | $BCf>.4k6H$K$*$1$k2=3XJ* | chemicals management small and medium-sized enterprises risk assessment | 13-c | 362 | |
I$B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$B2=3X;:6H5;=Q%U%)!<%i%`(B $B!c2=3X;:6H$N%0%m!<%P%k%*%Z%l!<%7%g%s!d(B | |||||
(10:00$B!A(B10:40)$B!!(B | |||||
I204 | [$B>7BT9V1i(B]$B>pJsEE;R2=3X%S%8%M%9$K$*$1$k%0%m!<%P%k%*%Z%l!<%7%g%s(B | Global strategy Global Supply chain Country risk | F-2 | 594 | |
(10:40$B!A(B12:00)$B!!(B($B;J2q(B $B>>ED(B $B=g(B) | |||||
I206 | $B%Q%M%kF$O@!'2=3X4XO";:6H$N>-MhE8K>$H%0%m!<%P%k%*%Z%l!<%7%g%s!!!]%0%m!<%P%k%5%W%i%$%A%'!<%s!](B | Global strategy of chemical industries Global Supply chain Country risk | F-2 | 627 | |
J$B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$B9q:]%7%s%]%8%&%`!J%P%$%*It2q!K!c%P%$%*%^%F%j%"%k%:$H%P%$%*%(%M%k%.!<$NH/E8!d(B | |||||
(10:00$B!A(B10:40)$B!!(B($B:BD9(B $B;3K\(B $B=$0l(B) | |||||
J204 | [$B>7BT9V1i(B] Graphene oxide: Biological responses and applications | Graphene oxide Biological responses Biomedical device | K-3 | 466 | |
J205 | [$B>7BT9V1i(B] Microporous membranes of biodegradable polyesters for biomedical applications | microporous membrane biodegradable polyesters tissue engineering | K-3 | 478 | |
(10:40$B!A(B11:20)$B!!(B($B:BD9(B $B8eF#(B $B2m9((B) | |||||
J206 | [$B>7BT9V1i(B] Engineered Biointerfaces by Using Reactive Coatings | Biointerface Reactive Coatings Biomedical device | K-3 | 471 | |
J207 | [$B>7BT9V1i(B] Photo-cleavable chemical tools for externally controlling biointerfaces | chemical tool biointerface photolysis | K-3 | 481 | |
(11:20$B!A(B12:00)$B!!(B($B:BD9(B $BKYFb(B $B=_0l(B) | |||||
J208 | [$B>7BT9V1i(B] Microalgae as the platform for CO2 reutilization and biofuels/bio-based chemicals production | Microalgae biofuels CO2 reutilization | K-3 | 415 | |
J209 | [$B>7BT9V1i(B] Novel ethanol-producing fungi for SSF of unused biomass | Mucor sp ethanol fermentation SSF | K-3 | 493 | |
(13:00$B!A(B14:00)$B!!(B($B:BD9(B $B6aF#(B $B> | |||||
J213 | [$B>7BT9V1i(B] Ethanol production from ionic liquid pretreated biomass by recombinant yeast | Bio-refinery Biomass Ionic liquid | K-3 | 495 | |
J214 | [$BE8K>9V1i(B] Bioenergy and Availability | Bioenergy Biomass Chemical Engineering | K-3 | 384 | |
L$B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$B%P%$%*(B | |||||
(9:00$B!A(B10:00)$B!!(B($B:BD9(B $B2,Ln(B $B7{;J(B) | |||||
L201 | $B%U%!!<%8BQ@-2=2+?'%V%I%&5e6]$KBP$9$k:F46@w@-%U%!!<%8$N2r@O(B | bacteriophage phage-host interaction mutation | 7-a | 545 | |
L202 | $B@8%4%_J,2r2aDx$K$*$1$kHy@8J*3h@-2=J* | Garbage treatment Microbial activation Activating agent | 7-g | 249 | |
L203 | $B86L}@8;:0f$K$*$1$kHy@8J*3XE*%5%o!<2=(B | souring sulfate-reducing bacteria | 7-g | 670 | |
(10:00$B!A(B11:00)$B!!(B($B:BD9(B $B@u8+(B $BOB9-(B) | |||||
L204 | $B9ZJl(BRB1 $B3t$N@\ | compost pH microorganisms | 7-g | 718 | |
L205 | $BC1J,;6%2%kN3;R$*$h$S1UE)Fb$K$*$1$kBgD26]G]M\$H%?%s%Q%/ | microfluidics E.coli monodisperse agarose gel particle | 7-a | 680 | |
L206 | $B$Y$sLS$J$i$S$K@~LS$NH/8=NL$,BgD26]$N@\Ce@-$KM?$($k1F6A(B | flagellum curli cell attachment | 7-a | 331 | |
(11:00$B!A(B12:00)$B!!(B($B:BD9(B $BHxEg(B $BM39I(B) | |||||
L207 | Development of Continuous Bioconversion System Using Thermophilic Whole-Cell Biocatalyst | Thermophilic fumarase Glutaldehyde Continuous reactor | 7-a | 38 | |
L208 | $B9H9m6](BMonascus ruber$B$N?'AG@8@.H?1~$K5Z$\$96];e7ABV$N1F6A2r@O(B | Monascus ruber pigment mycelial morphology | 7-a | 676 | |
L209 | Monascus red pigment production on rice using packed bed column | Solid state fermentation Monascus ruber Red mold rice | 7-a | 440 | |
M$B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$B2=3X;:6H5;=Q%U%)!<%i%`(B $B!c | |||||
(9:20$B!A(B12:00)$B!!(B($B:BD9(B $BC+Ln(B $B@59,(B) | |||||
M202 | [$B>7BT9V1i(B]$B | Co-production Interactive System Next Generation Energy System | F-2 | 178 | |
M204 | [$B>7BT9V1i(B]$B5[Ce<0%R!<%H%]%s%W$r1~MQ$7$?Dc29G.2s@85;=Q(B | Heat recovery Waste heat Adsorption heat pump | F-2 | 168 | |
M206 | [$B>7BT9V1i(B]$BB@M[G.H/EE$+$iG.MxMQ$X$NE83+(B | CSP Heat Storage Solar Fuel | F-2 | 306 | |
M208 | [$B>7BT9V1i(B]$B3W?7E*%,%i%9MOM;5;=Q(B | Glass melting Inflight melting Thermal plasma | F-2 | 316 | |
N$B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$BD6NW3&N.BN(B | |||||
(9:00$B!A(B10:00)$B!!(B($B:BD9(B $BFbED(B $BGn5W(B) | |||||
N201 | $BD6NW3&?eG.9g@.K!$K$h$k%P%j%&%`%8%k%3%M!<%H%J%NN3;R$N9g@.(B | Supercritical water Hydrothermal synthesis Barium zirconate | 8-e | 51 | |
N202 | $BD6NW3&%(%?%N!<%kMOG^$rMQ$$$?F | supercritical ethanol nanoparticle copper | 8-e | 127 | |
N203 | $BD6NW3&N.BN$rMQ$$$?9bIJ | Supercritical fluid Graphene Mass production | 8-e | 98 | |
(10:00$B!A(B11:00)$B!!(B($B:BD9(B $BBlV:(B $BHK | |||||
N204 | $BD6NW3&IOMOG^$K$h$k%j%3%T%s!?&B(B-$B%7%/%m%G%-%9%H%j%sJ#9gBN$N%J%NN3;R2=(B | supercritical antisolvent carotenoid cyclodextrin | 8-e | 508 | |
N205 | $B%^%$%/%m6u4VFb$ND6NW3&IOMOG^>=@O$K$h$k%F%*%U%#%j%sN3;RAO@=$KBP$9$kMO1UG;EY$N1F6A(B | Supercritical antisolvent crystallization Micro-space Theophylline microparticles | 8-e | 716 | |
N206 | $BD6NW3&MOBN5^B.KDD%K!$rMxMQ$7$?%+%U%'%$%sHyN3;RAO@=$K$*$1$kN3;R2s<}It>r7o$N1F6A(B | Rapid expansion of supercritical solutions Technique Caffeine microparticles Experimental conditions effects of particle collection section | 8-e | 728 | |
(11:00$B!A(B12:00)$B!!(B($B:BD9(B $B8eF#(B $B85?.(B) | |||||
N207 | Preparation of superhydrophobic poly methyl methacrylate surface by rapid expansion of supercritical carbon dioxide-paraffin wax solution spray coatings | Supercritical Carbon Dioxide Superhydrophoic Spray Coatings | 8-e | 205 | |
N208 | $BD6NW3&Fs;@2=C:AG$rMxMQ$7$?%]%j%$%_%I$NHy:Y2C9)$K4X$9$k4pACE*8!F$(B | supercritical carbon dioxide polyimide microfabrication | 8-e | 428 | |
N209 | $B9b05(BCO2$B$K$h$kAjJ,N%$rMxMQ$7$?%]%j%$%_%I(B-$B%7%j%+J#9gB?9& | high pressure carbone dioxide phase separation sol-gel process | 8-e | 60 | |
O$B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$BH?1~9)3X(B | |||||
(9:20$B!A(B10:20)$B!!(B($B:BD9(B $BsnF#(B $B>f{J(B) | |||||
O202 | SiC-CVD$B%W%m%;%9$K$*$1$k(BMTS$BJ,2rAGH?1~%a%+%K%:%`$N9=C[(B | SiC CVD reaction mechanism | 5-h | 174 | |
O203 | $B=P8}%,%9J,@O$rMQ$$$?(BSiC-CVD$B%W%m%;%9$NH?1~5!9=2r@O(B | CVD Silicon carbide reaction kinetics | 5-h | 180 | |
O204 | $B5^B.>xCeK!$K$h$kB@M[EECSMQBgN37B7k>=%7%j%3%sGvKl$N:n@=(B | physical vapor deposition silicon thin films large grains | 5-h | 56 | |
(10:20$B!A(B11:40)$B!!(B($B:BD9(B $BLnED(B $BM%(B) | |||||
O205 | SiC-CVD$B@=B$%W%m%;%9$K$*$1$k86NA%,%9$X$N1v2=%a%A%kE:2C8z2L(B | CVD SiC | 5-h | 176 | |
O206 | SiC-CVD$B%W%m%;%9$X$NC:2=?eAG%,%9E:2C8z2L(B | Silicon carbide CVD Reaction kinetics | 5-h | 130 | |
O207 | $BD6NW3&N.BN$rMQ$$$?B@M[EECSMQ(BCuInSe2$B$NDc29@=Kl%W%m%;%9(B | Solar Cell Supercritical Fluid CuInSe2 | 5-h | 62 | |
O208 | SeO2$B$rMQ$$$?D6NW3&N.BN%;%l%s2=%W%m%;%9$K$h$kB@M[EECS2=9gJ*H>F3BNGvKl$N:n@=(B | Solar Cell Supercritical Fluid CuInSe2/Cu2ZnSnSe4 | 5-h | 146 | |
(11:40$B!A(B12:00)$B!!(B($B;J2q(B $BAz3@(B $B9,9@(B) | |||||
O209 | [$BJ,2J2q>)Ne>^(B]CVD$BH?1~J,2J2q>)Ne>^^<0(B | CVD reaction enginnering encouraging prize | 5-h | 42 | |
P$B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$B9q:]%7%s%]%8%&%`(B $B!c%"%8%"CO0h$K$*$1$kBn1[$7$?2=3X9)3X$K4X$9$k9q:]%7%s%]%8%&%`!d(B | |||||
(9:00$B!A(B9:40)$B!!(B($B;J2q(B $B@>;3(B $B3P(B) | |||||
P201 | [$B%"%8%"9q:]>^(B] Biodiesel Research, Progress and Challenges in Malaysia (Universiti Teknologi PETRONAS) Bakar Suliana Abu $B!&(B | biodiesel malaysia oil palm | K-2 | 45 | |
(9:40$B!A(B11:00)$B!!(B($B;J2q(B $B>>B<(B $B9,I'(B) | |||||
P203 | [$B>7BT9V1i(B] Current Status of Bioenergy in China | Biomass energy policy China | K-2 | 714 | |
P205 | [$B>7BT9V1i(B] Development and Demonstration of Biomass Town System in Vietnam | biomass town biofuel vietnam | K-2 | 464 | |
P206 | [$B>7BT9V1i(B] Biodiesel Production by Utilizing Heterogeneous Catalytic Transesterification | Biodiesel Transesterification Heterogeneous catalyst | K-2 | 275 | |
(11:00$B!A(B11:20)$B!!(B($B;J2q(B $B>eB<(B $BK';0(B) | |||||
P207 | [$B>7BT9V1i(B] Is Elevated Pressure Required to Achieve a High Fixed-Carbon Yield of Charcoal from Biomass? | Biomass Charcoal Particle Size | K-2 | 46 | |
(11:20$B!A(B11:40)$B!!(B($B;J2q(B $BCf@n(B $B7I;0(B) | |||||
P208 | [$B>7BT9V1i(B] Distribution, Strength and Dealumination Behavior of Acid Sites in Nanostructured MFI Zeolites and Their Catalytic Consequences | Nanostructure MFI Zeolites Catalytic Consequences | K-2 | 48 | |
(11:40$B!A(B12:00)$B!!(B($B;J2q(B $BEOIt(B $B0=(B) | |||||
P209 | [$B>7BT9V1i(B] Understanding Desulfation Mechanism for Pt/BaO/Al2O3 Lean NOx Trap Catalysts | NOx storage-reduction catalyst clean and fuel-efficient transportation | K-2 | 47 | |
Q$B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$BJ,N%%W%m%;%9(B | |||||
(9:00$B!A(B10:00)$B!!(B($B:BD9(B $B@V>>(B $B7{ | |||||
Q201 | $B9bB.%,%9F)2a(BMFI$B%<%*%i%$%HKl$N3+H/(B | MFI zeolite membrane porous silica substrate seed coating | 4-a | 262 | |
Q202 | $B%"%k%+%j8e=hM}$K$h$k(BMOR$BKl$NF)2a5!9=8!F$(B | MOR zeolite membrane alkali treatment water isopropanol separation | 4-a | 263 | |
Q203 | $B%7%j%+J#9gKl$rMQ$$$?%a%?%s(B/$B%(%?%sJ,N%(B | silica hybrid membrane counter diffusion CVD methane/ethane separation | 4-a | 265 | |
(10:00$B!A(B11:00)$B!!(B($B:BD9(B $BLnB<(B $B4490(B) | |||||
Q204 | $BCf6u;eKl:n@=2aDx$K$*$1$k9bJ,;RMO1U$N%l%*%m%8! | hollow fiber membrane non-solvent induced phase separation Barus effect | 4-a | 411 | |
Q205 | $BG.M65/AjJ,N%K!$G:n@=$7$?BQMO:^@-%]%j%"%_%ICf6u;e8B30_I2aKl(B | polyamide membranes solvent resistant | 4-a | 455 | |
Q206 | $B?e>x5$M65/AjJ,N%K!(B(VIPS)$B$K$h$kCf6u;eKl$N30I=LLJ,N%AX$N@:L)@)8f(B | Vapor induced phase separation Surface hydrophilization Hollow fiber membrane | 4-a | 484 | |
(11:00$B!A(B12:00)$B!!(B($B:BD9(B $BHf2E(B $B=<(B) | |||||
Q207 | $B?tCMN.BNNO3X$rMQ$$$?Cf6u;e7?5U?;F)%b%8%e!<%k$NN.F02r@O(B | CFD Hollow Fiber Reverse Osmosis | 4-a | 32 | |
Q208 | $BG;8|(BO/W$B%(%^%k%7%g%s$NKl:Y9&F)2a5sF0$K4X$9$k?tCME*8!F$(B | CLSVOF Emulsion Membrane | 4-a | 688 | |
Q209 | $BN3;RJ,;61U$N%G%C%I%(%s%I$m2a$K$*$$$F:Y9&7B$H3+9&Hf$,%U%!%&%j%s%05sF0$KM?$($k1F6A(B | fouling dead-end simulation | 4-a | 395 | |
R$B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$BJ,N%%W%m%;%9(B | |||||
(9:00$B!A(B10:00)$B!!(B($B:BD9(B $B@>IM(B $B>OJ?(B) | |||||
R201 | $B%0%j%7%s%"%k%-%k%"%_%I7??75,Cj=P:^$N3+H/$H$=$NCj=PFC@-$NI>2A(B | solvent extraction extractant rare metal recycling | 4-f | 182 | |
R202 | PC-88A$B$rCj=P:^$H$7$?7Z4uEZN`6bB0$NJ?9UCj=P(B | light rare-earth metals PC-88A Solvesso150 | 4-f | 651 | |
R203 | $BMOG^Cj=PK!$rMQ$$$?F};@2s<}$K$*$1$k1v$N8z2L(B | Extraction Lactate Salting out | 4-f | 264 | |
(10:00$B!A(B11:00)$B!!(B($B:BD9(B $B>>K\(B $BF;L@(B) | |||||
R204 | Simultaneous Extraction of Essential Oil and Polyphenolic Compounds from Shikuwasa Peel by Microwave-Assisted Steam Distillation | microwave steam distillation essential oil | 4-f | 641 | |
R205 | $BJ,2r7ZL}$K4^$^$l$kK'9aB2C:2=?eAG$NMOG^Cj=P(B | cracked light oil solvent extraction aromatic hydrocarbon | 4-f | 647 | |
R206 | $B8~N.B?CJCj=P$K$h$k%3!<%k%?!<%k5[<}L}$NJ,N%(B | coal tar absorption oil countercurrent multistage extraction mass transfer rate | 4-f | 650 | |
(11:00$B!A(B12:00)$B!!(B($B:BD9(B $B?9(B $B=( | |||||
R207 | $B>xN1Ec$K$*$1$kM}O@CJ?t$N7W;;K!(B | number of theoretical plates distillation process simulator | 4-c | 279 | |
R208 | Multi-Effect Utilization of Internally Heat-Integrated Distillation Columns | Heat-integrated distillation Energy-efficient distillation Multi-Effect Distillation | 4-c | 14 | |
R209 | 3$B | Ternary system Energy-saving distillation system Energy conservation | 4-c | 12 |