C $B2q>l(B | |||||
---|---|---|---|---|---|
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$B%7%s%]%8%&%`(B <$B%P%$%*%^%9MxMQ$N$?$a$N5;=Q3+H/:G@hC<(B> | |||||
(9:20$B!A(B10:20) ($B:BD9(B $BCf:j(B $B@6I'(B) | |||||
C302 | $B | lignin hydrolysis depolymerization | S-50 | 461 | |
C303 | $B%j%s%*%-%=;@?eG.H?1~$K$h$k%M%T%"%0%i%9$+$i$N%-%7%i%sJ,N%$H%U%i%sM6F3BN$X$NJQ49(B | furans phosphorus oxoacid selective dissociation of xylan | S-50 | 488 | |
C304 | $B%"%k%+%j=hM}$r%Y!<%9$H$9$k9q;:%=%k%,%`7T$NMxMQ%U%m!<(B | Sorghum Hemicellulose Lignin | S-50 | 500 | |
(10:20$B!A(B11:20) ($B:BD9(B $BLnCf(B $B42(B) | |||||
C305 | $B%;%k%m!<%97O%P%$%*%^%9$N9ZAGJ,2r$K$*$1$kD62;GHA0=hM}$N1F6A(B | cellulose degradation pretreatment ultrasonic irradiation | S-50 | 700 | |
C306 | $B%?%1$+$i$N%(%?%N!<%k@8;:$rL\E*$H$7$?A0=hM}$N8z2L(B | bioethanol bamboo pretreatment | S-50 | 984 | |
C307 | $BH/9ZAK32J* | Fermentation inhibitors Lignocellulosic biomass Yeast | S-50 | 181 | |
(11:20$B!A(B12:00) ($B:BD9(B $BKL@n(B $B>0H~(B) | |||||
C308 | $B3$AtBOHn$+$iBQG.@-F};@@8@.6]$NC1N%(B | Isolation Thermoduric lactobacilli Lactic acid | S-50 | 976 | |
C309 | Cellvibrio sp. $B$+$i$N&A(B-$B%"%,%i!<%<0dEA;R$N%/%m!<%K%s%0$H4(E7$NJ,2r(B | Cellvibrio sp. agarase cloning | S-50 | 520 | |
(13:00$B!A(B13:40) ($B;J2q(B $B>>B<(B $B9,I'(B) | |||||
C313 | [$BE8K>9V1i(B] $B%j%0%N%;%k%m!<%97O%P%$%*%^%9M3MhH/9ZAK32:^$KBP$9$k9ZJl$N%9%H%l%91~Ez(B | vanillin furaldehydes yeast | S-50 | 468 | |
(13:40$B!A(B15:00) ($B:BD9(B $B?@L>(B $BKcCR(B) | |||||
C315 | $B%3%s%]%9%H2=$K$*$1$k@Z$jJV$7$HHy@8J*AQA+0\(B | composting turning microbial succession | S-50 | 638 | |
C316 | $B@8J*FqJ,2r@-M-5!J*$NG.2=3XE*%,%92=FC@-$N8!F$(B | Anaerobic digestion sludge Aquaticweed Thermochemical gasification | S-50 | 874 | |
C317 | $B%0%j%;%m!<%k$N%a%?%sH/9Z=hM}$K$H$b$J$&Hy@8J*AQJQ2=(B | methane fermentation glycerol microbial consortium | S-50 | 636 | |
C318 | $BGQ?)MQL}$rMQ$$$?Cf29%a%?%sH/9Z$K$*$1$kA0=hM}(B($B$1$s2=(B)$B$N8!F$(B | methane fermentation waste oil pretreatment | S-50 | 877 | |
(15:00$B!A(B16:00) ($B:BD9(B $BEOIt(B $BAO;N(B) | |||||
C319 | $B%P%$%*%G%#!<%<%k@=B$$K$*$1$kYxYBAe$rMQ$$$?%(%9%F%k8r49H?1~B.EY(B | biodiesel production transesterification rate countercurrent multistage reactor | S-50 | 653 | |
C320 | $B<><0_d>F$K$h$k;33KEm$NHi$+$i$N%P%$%*%*%$%k$*$h$S;D^V<}N($K5Z$\$9(BpH$B$N8z2L(B | Wet torrefaction pH peels of Carya cathayensis sarg | S-50 | 767 | |
C321 | $B%j%0%N%;%k%m!<%9J,2rL}$NG3>FG.$H86;RAH@.$H$N4X78(B | pyrolysis oil lignocellulose calorific value | S-50 | 889 | |
(16:00$B!A(B17:00) ($B:BD9(B $B>eB<(B $BK';0(B) | |||||
C322 | $B%R%I%m%-%7%i%8%+%k$rMQ$$$?%j%0%K%s$NDcJ,;R2=$K$h$kM-MQJ* | Lignin Hydroxyl radical Microwave | S-50 | 600 | |
C323 | $B%$%*%s1UBN$KMO2r$7$?%j%0%K%s$NH?1~(B | Biomass Lignin Ionic liquid | S-50 | 841 | |
C324 | $B%$%*%s1UBN!>M-5!MOG^FsAj7O$K$*$1$k(B5$B!>%R%I%m%-%7%a%A%k%U%k%U%i!<%k$NJ,G[5sF0(B | ionic liquid HMF partition coefficients | S-50 | 90 | |
(17:00$B!A(B18:00) ($B:BD9(B $B>.NS(B $B7I(B) | |||||
C325 | $B%$%*%s1UBN$K$h$jJ,2h$5$l$?%j%0%K%s$N | lignin ionic liquid biorefinery | S-50 | 313 | |
C326 | $B%j%0%K%s(B/$B%;%k%m!<%97O%&%C%I%W%i%9%A%C%/:`NA$NI=LLFC@-$N2r@O(B | biomass wood-plastic composites characterization of surface | S-50 | 826 | |
C327 | $B$+$s$T$g$&$rMQ$$$?4%Ag>{:^$N3+H/$HI>2A(B | Kanpyo Desiccating Tablet Dried Gourd | S-50 | 227 | |
D $B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$B%7%s%]%8%&%`(B <CVD$B!&%I%i%$%W%m%;%9!!!]9=B$!&5!G=@)8f$NH?1~9)3X!](B> | |||||
(9:40$B!A(B10:40) ($B:BD9(B $BEgED(B $B3X!&6LCV(B $BD> | |||||
D303 | [$B>7BT9V1i(B] $B%9%Q%C%?K!$K$h$kE4%A%?%sJ#;@2=J*GvKl$N:n@=$H:.9g86;R2A@)8f(B | reactive sputtering Hematite-ilmenite solid solution epitaxial thin | S-2 | 353 | |
D304 | $B3F | titanium carbide hard coating chemical vapor deposition | S-2 | 946 | |
D305 | Co$B%"%_%G%#%M!<%H$rMQ$$$?(BCo-CVD$B%W%m%;%9$K$*$1$k5$AjH?1~$H$=$NLr3d(B | amidinate cobalt thermal CVD | S-2 | 508 | |
(10:40$B!A(B12:00) ($B:BD9(B $BLnED(B $BM%!&;01:(B $BK-(B) | |||||
D306 | $B9bG[8~@-F3EE@-;@2=J*2 | ferroelectric material pulsed laser deposition conductive oxide | S-2 | 947 | |
D307 | $B?75,(BRu-CVD/ALD$B86NA$rMQ$$$? | Ruthenium CVD ALD | S-2 | 605 | |
D308 | $B%"%_%G%#%M!<%H86NA$rMQ$$$?(BCu-CVD$B$K$*$1$k=i4|3KH/@8$N4Q;!(B | Cu-CVD Nucleation Amidinate | S-2 | 959 | |
D309 | [$B>7BT9V1i(B] TSV$B | Si-DRIE Scallop-free TSV packaging | S-2 | 356 | |
(13:00$B!A(B14:20) ($B:BD9(B $B=);3(B $BBY?-!&;0Bp(B $B2m?M(B) | |||||
D313 | Kinetic study on Hot-wire-assisted Atomic Layer Deposition of Ni Thin Films | Hot-wire-assisted ALD Ni film Kinetics | S-2 | 803 | |
D314 | $B%J%NN3;RBO@QKl$N>F@.$K$h$k9=B$@)8f(B | PECVD Porous thin film Sintering | S-2 | 123 | |
D315 | $BM-5!%/%m%m%7%i%s$r86NA$H$7$?(BSiC-CVD$B%W%m%;%9=P8}%,%9J,@O$K$h$kH?1~%b%G%k$N8!F$(B | CVD Metyltrichlorosilane Dimetyldichlorosilane | S-2 | 587 | |
D316 | $B%8%a%A%k%8%/%m%m%7%i%s$r86NA$H$7$?(BSiC-CVD$B%W%m%;%9$N%^%k%A%9%1!<%k2r@O(B | SiC CVD Dimethyldichlorosilane | S-2 | 577 | |
(14:20$B!A(B15:40) ($B:BD9(B $BAz3@(B $B9,9@!&J]8MDM(B $B>?(B) | |||||
D317 | $B%7%i%s(B/$B?eAG(BPE-CVD$BCf$N%7%j%3%s6I=j@=Kl$N2r@O(B | PE-CVD silicon deposition | S-2 | 454 | |
D318 | $B%a%?%s$r86NA$H$9$k2=3X5$Aj?;F)K!$K$h$kC:AGA!0]6/2=C:AGJ#9g:`NA@=B$2aDx$NHsDj>o%7%_%e%l!<%7%g%s(B | reaction kinetics transport phenomena CVD | S-2 | 899 | |
D319 | $B%+!<%\%s%J%N%A%e!<%V$NIbM7%3!<%F%#%s%0(B | composite PECVD nanoparticles | S-2 | 124 | |
D320 | Fluidized Bed CVD of Carbon Nanotubes Using a Heat-Exchange Reactor | carbon nanotubes fluidized bed catalytic chemical vapor deposition | S-2 | 729 | |
E $B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$B%7%s%]%8%&%`(B <$B%^%$%/%m2=3X%W%m%;%98&5f!&5;=Q3+H/$N:GA0@~(B> | |||||
(9:20$B!A(B10:40) ($B:BD9(B $B>>_7(B $B8w9(!&KR(B $BBYJe(B) | |||||
E302 | $B%^%$%/%m%j%"%/%?! | microfluidics emulsion polymerization slug flow | S-30 | 920 | |
E303 | $B%^%$%/%mN.O)$KH/@8$5$;$?9bEE>l$K$h$k%H%k%(%s!=?e7O%(%^%k%8%g%s$N2rF}2=(B | Demulsification Microreactor Electric field | S-30 | 734 | |
E304 | $B%^%$%/%mN.O)$K$*$1$k%H%k%(%sAj$+$i$N%+%j%&%`%$%*%s$N%9%i%0N.Cj=P(B | Extraction Microreactors | S-30 | 728 | |
E305 | $B@QAX7?B?N.O)H?1~4o(B(SMCR)$B$rMQ$$$?6bB0%$%*%s$NMOG^Cj=P$N;vNc8!F$(B ($B?@9]%(%s%8%K%"%j%s%0(B&$B%a%s%F%J%s%9(B) $B!{;32<(B $BOB9(!&(B | microchannel solvent extraction reactor | S-30 | 823 | |
(10:40$B!A(B12:00) ($B:BD9(B $B@PDM(B $B5*@8!&IpF#(B $BL@FA(B) | |||||
E306 | $BJBNs%^%$%/%m%j%"%/%?$NJD:I?GCG;~=$I|A`:n$rMF0W$K$9$kN.BNJ,G[AuCV@_7W(B | Parallelized microreactors Blockage diagnosis Flow distributor design | S-30 | 134 | |
E307 | $B%(%C%A%s%0%"%k%_%K%&%`Gs$rMQ$$$?%^%$%/%m%j%"%/%?$N3+H/(B | micro reactor etched aluminum methanol steam reforming | S-30 | 250 | |
E308 | $BB?9& | microreactor photocatalyst porous glass | S-30 | 458 | |
E309 | $BD6NW3&8w?(G^%^%$%/%m%j%"%/%?!<$N3+H/$H$=$NFC@-I>2A(B | microreactor photocatalytic reaction supercritical fluid | S-30 | 513 | |
(13:00$B!A(B13:40) ($B;J2q(B $BEBB<(B $B=$!&>>2,(B $BN<(B) | |||||
E313 | [$BE8K>9V1i(B] $B%^%$%/%m%j%"%/%?!<5;=Q$r1~MQ$7$?=E9g$NO"B32=(B | Microreactor Living cationic polymerization Reactor design | S-30 | 562 | |
(13:40$B!A(B14:40) ($B:BD9(B $BEDCf(B $B?N>O!&;3ED(B $BGn;K(B) | |||||
E315 | $B%^%$%/%m6u4V$r3hMQ$7$?%3%l%9%F%m!<%k$N>K;@%(%9%F%k2=(B | microreactor nitration nitric acid ester compound | S-30 | 953 | |
E316 | $B%^%$%/%m%j%"%/%?!<$rMQ$$$?Aj4V0\F0?(G^$K$h$k0BB)9a;@%U%'%K%k@8@.H?1~(B | microreactor phase transfer catalyst liquid multiphase reaction | S-30 | 199 | |
E317 | $B%Q%i%8%&%`%J%NN3;R$rC4;~$7$?%]%j%^!<%b%N%j%9$N3+H/$HM-5!9g@.%j%"%/%?!<$X$NE,MQ(B | monolith reactor organic synthesis | S-30 | 839 | |
(14:40$B!A(B16:00) ($B:BD9(B $B@nGH(B $BH%!&0B@n(B $BH;Li(B) | |||||
E318 | $B%^%$%/%m%j%"%/%?%W%i%s%H$rMQ$$$?%]%j%a%?%/%j%k;@%a%A%k$NO"B39g@.(B | microreactor polymethylmethacrylate polymerization reaction | S-30 | 186 | |
E319 | $B%-%J%/%j%I%s4iNA$N9b299b05%^%$%/%m9g@.$K$*$1$kH?1~>r7o$N8!F$(B | microreactor cyclization oxidation | S-30 | 838 | |
E320 | $BGX05J[Fb$NHy>.%*%j%U%#%9$rMQ$$$?6E=8%J%NN3;RO"B3:FJ,;6%W%m%;%9$N3+H/(B | nanoparticle orifice re-dispersion | S-30 | 35 | |
E321 | $B%^%$%/%mN.O)$rN.$l$k5$1U!?1U1U%9%i%0N.$N%9%i%0D9$5?dDj(B | slug flow microchannel state estimation | S-30 | 817 | |
F $B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$B%7%s%]%8%&%`(B <$B4D6-$H0BA4$N=EMW$JC4$$ | |||||
(9:20$B!A(B10:40) ($B:BD9(B $BGr@P(B $BJ8=(!&BgC+(B $B?50lO:(B) | |||||
F302 | $B%a%A%l%s%V%k!<$ND62;GHJ,2rH?1~$K$*$1$kB.EYDj?t?d;;%b%G%k(B | Ultrasound Degradation Kinetics | S-5 | 530 | |
F303 | Degradation of brominated flame retardant HBCD by ultrasonic irradiation | HBCD(hexabromocyclododecane) Ultrasonic Degradation | S-5 | 208 | |
F304 | $B%J%NN3;R@=B$$N$?$a$NO"B37?1UAj%l!<%6!<%"%V%l!<%7%g%sAuCV$N3+H/(B | Laser Ablation Nanoparticle Metal Oxide | S-5 | 36 | |
F305 | $B@EEEHyN32=EE5$=8?P5!$rMQ$$$?%J%NN3;R$NJa=8(B | Electrostatic Atomization Nanoparticle Electrostatic Precipitator | S-5 | 38 | |
(10:40$B!A(B12:00) ($B:BD9(B $B86Ln(B $B0BEZ!&GpED(B $BB@O:(B) | |||||
F306 | $B?eMO1U$KMO2r$7$?5B;@J,2r$K4p$E$/8w?(G^A!0]Kl$N@-G=I>2A(B | Fibrous photocatalyst Formic acid Reactor | S-5 | 94 | |
F307 | $B%,%i%9JILL$K8GDj2=$7$?8w?(G^$K$h$k(B2,4-$B%8%K%H%m%U%'%N!<%kJ,2r$N5!9=(B | Reaction mechanism 2,4-dinitrophenol Photocatalyst | S-5 | 97 | |
F308 | $B%A%?%K%"!?%7%j%+8w?(G^$K$h$k4^CbAGO;0w4DG@Lt$NJ,2r(B | Photocatalyst TiO$2$/SiO$2& Agricultural chemicals | S-5 | 320 | |
F309 | $B6d%I!<%W%A%?%K%"!?%7%j%+8w?(G^$K$h$kBgD26]$*$h$S8OAp6]$N;&6](B | Ag-doped TiO$2$/SiO$2$ photocatalytic disinfection #Bacillus subtili# | S-5 | 322 | |
(13:00$B!A(B14:40) ($B:BD9(B $B%i%U%!%(%k(B $B%P%H%l%9!&OBED(B $BM4E5(B) | |||||
F313 | $B%K%H%m%;%k%m!<%9$N<+A3J,2r$K5Z$\$9;@$N1F6A(B | Nitrocellulose Spontaneous ignition Accelerating rate calorimeter (ARC) | S-5 | 532 | |
F314 | $B%H%j%"%>!<%k%*%sM6F3BN$NG.J,2r5sF0$HJ,2r5!9=$N8!F$(B | triazole derivatives thermal decomposition molecular orbital calculation | S-5 | 993 | |
F315 | [$B0MMj9V1i(B] A2L$BNdG^$NCe2P5Z$SG3>FFC@-(B | Refrigerant Ignition CH radicals | S-5 | 687 | |
F316 | [$B0MMj9V1i(B] $BG.J,@O$rMQ$$$?M-5!2a;@2=J*$NJ,2r$K4X$9$k8&5f(B | hazardous evaluation differential scanning calorimeter adiabatic calorimeter | S-5 | 107 | |
F317 | [$B0MMj9V1i(B] $B2=3XH/8wB,Dj$rMQ$$$?H/G.!&H/2P4m81@-I>2A(B | Chemiluminescence autoxidation fire accident | S-5 | 702 | |
(14:40$B!A(B15:20) ($B;J2q(B $B0fFb(B $B8,Je(B) | |||||
F318 | [$BE8K>9V1i(B] $B%W%m%;%90BA44IM}$H%W%m%;%9%1%_%9%H%j!<(B | Process Safety Management Process Chemistry Life Cycle Engineering | S-5 | 157 | |
(15:20$B!A(B17:00) ($B:BD9(B $B2CF#(B $B>!H~!&>>2,(B $B9/@2(B) | |||||
F320 | $B%W%m%;%90BA44IM}$HE}9g%G!<%?%Y!<%9(B | Process Safety Management Integrated Database Life Cycle Engineering | S-5 | 441 | |
F321 | [$B0MMj9V1i(B] $BGzH/2P:R%G!<%?%Y!<%9$rMQ$$$?H?1~K=Av$K$h$k;v8N;vNc$NJ,@O(B | Explosion and Fire Database Runaway Reaction | S-5 | 241 | |
F322 | $B9)6H%W%m%;%9$K$*$1$k%i%8%+%kH?1~$H%W%m%;%93+H/(B | Radical reaction process development safety | S-5 | 781 | |
F323 | $B2=3X%W%m%;%93+H/$K$*$1$k0BA4I>2A5;=Q(B | Process Safety Technology Runaway reaction Scale Up | S-5 | 387 | |
F324 | $BG3>F8B3&$rKI$0%9%?!<%H%"%C%W$H%7%c%C%H%@%&%s$N?7$7$$ | operating procedures microgenetic algorithms mixing tank | S-5 | 1021 | |
G $B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$B%7%s%]%8%&%`(B <$B%W%i%:%^%W%m%;%C%7%s%0$K$h$k2=3X9)3X$N?7E83+(B> | |||||
(10:00$B!A(B11:00) ($B:BD9(B $BEDCf(B $B3X(B) | |||||
G304 | $BM6EEBN%P%j%"J|EE$rMxMQ$7$?(BPM$B=|5nK!$K$*$1$kH?1~5!9=$N8!F$(B | particulate matter pulse plasma dielectric barrier discharge | S-3 | 884 | |
G305 | $B%"%k%4%sBg5$05%W%i%:%^%8%'%C%H$H?eMO1U$H$N@\?(H?1~FC@-(B | atmospheric plasma active oxidation species electron temperature | S-3 | 943 | |
G306 | $B0[$J$k%\%$%IN($H$=$N5$K"7B$,$*$h$\$9%Q%k%9%Q%o! | Nano/micro-bubble Pulsed power discharge Radical species | S-3 | 961 | |
(11:00$B!A(B12:00) ($B:BD9(B $B>.6L(B $BAo(B) | |||||
G307 | $B%J%NIC%@%V%k%Q%k%9%l!<%6!<>H | spherical particle double pulsed laser particle size | S-3 | 327 | |
G308 | SPCP$BH?1~4o$rMQ$$$?(BVOC$BJ,2r$KBP$9$kEE6K9=@.$N1F6A(B | Surface discharge Ceramic filter Discharge electrode | S-3 | 958 | |
G309 | $BJ4:U$7$?3$;:AtN`$N%W%i%:%^=hM}(B | Surface discharge Ceramic filter Seaweed | S-3 | 1001 | |
H $B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$B%7%s%]%8%&%`(B <$B:F@82DG=%(%M%k%.!<%j%5%$%/%k$N | |||||
(9:40$B!A(B10:40) ($B:BD9(B $BCfEgED(B $BK-(B) | |||||
H303 | $B%"%s%b%K%"5[B"J*x5$05@)8f(B | ammonia vapor pressure PCI | S-1 | 698 | |
H304 | $B= | Ammonia Metal chloride Packed bed reactor | S-1 | 541 | |
H305 | $B%*%k%,%N%7%j%+?eAGJ,N%Kl$N3+H/$H%a%A%k%7%/%m%X%-%5%sC&?eAGKl7?H?1~4o$X$N1~MQ(B | hydrogen separation membrane organic-hydrides membrane reactor | S-1 | 603 | |
(10:40$B!A(B12:00) ($B:BD9(B $BETN1(B $BL-N;(B) | |||||
H306 | $B%3%P%k%H;@%j%A%&%`$rMQ$$$??75,G.2=3X?eJ,2r(B | Hydrogen Water-splitting Thermochemical | S-1 | 711 | |
H307 | $BM-5!%O%$%I%i%$%I$N?eAG%(%M%k%.! | Dehydrogenation Organic hydride Superheated liquid-film state | S-1 | 750 | |
H308 | [$B>7BT9V1i(B] $B?eAG%(%M%k%.!<$NBgNLCyB"M"Aw5;=Q(B | Organic Chemical Hydride SPERA H2 Hydrogen Energy | S-1 | 84 | |
(13:00$B!A(B14:00) ($B:BD9(B $B55;3(B $B=(M:(B) | |||||
H313 | [$B>7BT9V1i(B] $B:F@82DG=%(%M%k%.!<$K$h$k%"%s%b%K%"9g@.%W%m%;%9$N2]Bj$HE8K>(B | Renewable energy ammonia synthesis process ammonia catalysts | S-1 | 48 | |
H315 | $B%"%s%b%K%"$rMQ$$$?%(%M%k%.!<%-%c%j%"$N>-MhE8K>(B | Ammonia Energy carrier Ammonia energy system | S-1 | 584 | |
(14:00$B!A(B15:00) ($B:BD9(B $B>e5\(B $B@.G7(B) | |||||
H316 | $B%"%s%b%K%"J,N%2s<}$N%W%m%;%9@_7W$H?eAG%(%M%k%.! | ammonia energy carrier process evaluation | S-1 | 197 | |
H317 | ISN$B%5%$%/%k$K$*$1$k%"%s%b%K%"@8@.H?1~$N8!F$(B | Ammonia synthesis Thermochemikal Cycle Reaction Rate | S-1 | 315 | |
H318 | TUAT$B%O%$%V%j%C%I%5%$%/%k$K$h$kHnNAMQ%"%s%b%K%"?e$N@=B$$K4X$9$k8&5f(B | Ammonia synthesis TUAT hybrid cycle Reaction Rate | S-1 | 318 | |
(15:00$B!A(B16:00) ($B:BD9(B $B>.Eg(B $BM37Q(B) | |||||
H319 | $BMM!9$JCbAG4^M-%P%$%*%^%9$KE,MQ2DG=$J%"%s%b%K%"2s<}7?%a%?%sH/9ZK!$N3+H/(B | Ammonia biomass methane fermentation | S-1 | 966 | |
H320 | $B%"%s%b%K%"J,2r?eAG@=B$$rL\E*$H$7$?(BNi$BC4;}?(G^$K$*$1$kC4BN8z2L(B | ammonia decomposition Ni loaded catalyst hydrogen production | S-1 | 661 | |
H321 | $B%"%s%b%K%":.9gG3NA$NG3>FFC@-$K4X$9$k4pAC8&5f(B | ammonia combustion combustion velocity | S-1 | 372 | |
(16:00$B!A(B17:00) ($B:BD9(B $BLnED(B $BNh<#(B) | |||||
H322 | $B%"%s%b%K%"M=G.G3>F$K$*$1$k(BNOx$BGS=PFC@-I>2A(B | ammonia NOx formation pre-heating combustion | S-1 | 375 | |
H323 | $BKlH?1~4o$rMQ$$$?%"%s%b%K%"J,2r$H(BCO2$B%a%?%s2=H?1~$NJ#9g2=(B | CO2 methanation ammonia decomposition membrane reactor | S-1 | 857 | |
H324 | $B1UBN%"%s%b%K%"EE5$J,2r$K$*$1$k%"%N!<%I5Z$S%+%=!<%IH?1~$G$N2aEE05FC@-I>2A(B | liquid ammonia electrolysis Overvoltage | S-1 | 870 | |
(17:00$B!A(B18:00) ($B:BD9(B $B2VED(B $B?.;R(B) | |||||
H325 | $B1UBN%"%s%b%K%"EE5$J,2r$K$*$1$k;Y;}EE2r | Ammonia electrolysis Hydrogen | S-1 | 909 | |
H326 | $B%"%s%b%K%"5[B"J* | Chlorides Grahpite Pressure control | S-1 | 494 | |
H327 | $BJ#9g6bB0?eAG2=J*$rMQ$$$?%"%s%b%s%K%"$+$i$N?eAGH/@8(B | ammonia complex metal hydride hydrogen generation | S-1 | 975 | |
J $B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$B%7%s%]%8%&%`(B <$B | |||||
(9:20$B!A(B10:20) ($B:BD9(B $BDE5W0f(B $BLP | |||||
J302 | PrBaInO4$B$H$=$NGI@8J*E:2CG3NA6K$rMQ$$$?8GBN;@2=J*G3NAEECS$NEE5$2=3XFC@-(B | solid oxide fuel cell anode proton conductor | S-4 | 934 | |
J303 | SOFC$BMQ(BLa0.85Sr0.15Cr1-xNixO3-CeO2$B7O;@2=J*:.9g%"%N!<%I$NH/EEFC@-$HBQNt2=@-G=(B | Solid oxide fuel cell oxide anode perovskite | S-4 | 940 | |
J304 | $B%j%A%c!<%8%c%V%k!&%@%$%l%/%H%+!<%\%sG3NAEECS$K$*$1$kD>@\;@2=H?1~$NLr3d(B | solid oxide fuel cell direct carbon | S-4 | 949 | |
(10:20$B!A(B11:00) ($B:BD9(B $BCf@n(B $B?B9%!&J!D9(B $BGn(B) | |||||
J305 | SOFC$B$K$*$1$k(BGd0.5Sr0.5CoO3$B;@AG6KGvKl$NFC@-I>2A(B | SOFC GSCO Thin film | S-4 | 143 | |
J306 | $B%Q%k%9J. | SOFC direct carbon isooctane | S-4 | 963 | |
(11:00$B!A(B12:00) ($B;J2q(B $BJ!D9(B $BGn!&DE5W0f(B $BLP | |||||
J307 | [$B>7BT9V1i(B] $B9b29?e>x5$EE2r(B(SOEC)/$B8GBN;@2=J*7AG3NAEECS(B(SOFC)$B2D5U:nF0%;%k$N3+H/$H:#8e$NE8K>(B | Reversible SOFC/SOEC | S-4 | 888 | |
(13:00$B!A(B14:00) ($B:BD9(B $B@>B<(B $B82!&2O@%(B $B85L@(B) | |||||
J313 | CNF$B?(G^$rMQ$$$?9b3h@-?(G^AX$N7A@.$K4X$9$k8&5f(B | direct methanol fuel cell carbon nanofiber catalyst layer | S-4 | 289 | |
J314 | $B%A%?%K%"=$>~(BCNF$BC4BN$rMQ$$$?%"%k%3!<%k;@2=EE6K?(G^(B | TiO2 modified CNF support Electrode catalyst Direct Alcohol Fuel Cell | S-4 | 291 | |
J315 | $B?75,;02A(B | graphene nanocrystal fuel cell | S-4 | 180 | |
(14:00$B!A(B14:40) ($B:BD9(B $B2O@%(B $B85L@!&@>B<(B $B82(B) | |||||
J316 | Pt$BC4;}(BTiO2$B4^M-(BCNF$B?(G^$K$*$1$k%(%?%N!<%k;@2=H?1~(B | Ethanol oxidation reaction Pt nanoparticles TiO$2$ embedded carbon nanofibersupport | S-4 | 296 | |
J317 | $BD>@\%.;@7?G3NAEECS$N2aEE052r@O(B | Direct Formic Acid Fuel Cell Overpootential Cell Structure | S-4 | 442 | |
K $B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$B%7%s%]%8%&%`(B <$B2=3XAuCV$K$*$1$k:`NA5;=Q(B> | |||||
(10:00$B!A(B11:00) ($B:BD9(B $Bc&K\(B $BNIB'(B) | |||||
K304 | [$B>7BT9V1i(B] $B2=3XAuCV$K$*$1$kIe?)KI?)$N8=>u$H2]Bj(B | Corrosion enigneering Chemical plants | S-49 | 1017 | |
K306 | $B%(%]%-%7 | Epoxy Thermal degradation IR spectroscopy | S-49 | 266 | |
(11:00$B!A(B12:00) ($B:BD9(B $B | |||||
K307 | $B%(%?%N!<%k4D6-$K$*$1$kG.2DA:@-%W%i%9%A%C%/$N?;F)Nt2=5sF0$HD62;GH$K$h$kI>2A(B | Thermoplastics Permeation degradation ethanol | S-49 | 619 | |
K308 | $B%\%$%i! | stress corrosion cracking low alloy steel boiler water | S-49 | 417 | |
K309 | $B8GBNN3;R>WFM$*$h$S1UE)>WFM%(%m!<%8%g%sNL?d;;<0$NHf3S!&8!F$(B | solid particle erosion water droplet erosion estimative equations | S-49 | 418 | |
P $B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$B%7%s%]%8%&%`(B <$BKl9)3X$K4X$9$k8&5f!&3+H/$K$*$1$k?7E83+(B> | |||||
(9:00$B!A(B10:40) ($B:BD9(B $BBg66(B $B=(Gl!&D9_7(B $B425,(B) | |||||
P301 | Post-combustion$B$K$*$1$kEE5$2=3XE* | CO2 electrochemical membrane | S-40 | 349 | |
P302 | $BM-5!B?9& | hollow fiber membrane gas absorption membrane Monoethanolamine | S-40 | 682 | |
P303 | $BJ,;RF0NO3XK!$K$h$kM-5!41G=4p=$>~%7%j%+Kl$K$*$1$k(BCO2/N2$BJ,N%%7%_%e%l!<%7%g%s(B | molecular dynamics aminopropyl group CO2 separation | S-40 | 224 | |
P304 | CO2$BJ,N%Kl$H$7$F9%E,$J%,%95[<}FC@-$rM-$9$k%"%_%N;@%$%*%s1UBN$N@_7W(B | CO2 separation Facilitated transport membrane Amino acid ionic liquid | S-40 | 808 | |
P305 | $B<+N'5[C&Ce%]%j%^!<$r%0%i%U%H8GDj2=$7$?5!G=Kl$N3+H/(B | molecular recognition coordinative phenomenon plasma graft polymerization | S-40 | 516 | |
(10:40$B!A(B12:00) ($B:BD9(B $B?@Hx(B $B1Q<#!&6b;X(B $B@58@(B) | |||||
P306 | $B%"%b%k%U%!%9%7%j%+Kl$N%W%i%:%^(BCVD$B@=Kl$*$h$S5$BNF)2aFC@-(B | silica membrane gas separation plasma enhanced CVD | S-40 | 903 | |
P307 | $B%U%)%H%j%=%0%i%U%#!<$rMxMQ$7$?(BPd$BJ#9gKl$K$*$1$k(BNi$B;Y;}AX$N9=B$@)8f(B | Pd membrane photolithography | S-40 | 740 | |
P308 | Effect of polydopamine coating on antibiofouling potential of RO membrane | Polydopamine Antibiofouling RO membrane | S-40 | 466 | |
P309 | $BJ,;RG'<1%$%*%s%2!<%HKl$K$*$1$k%$%*%s?;F)05%b%G%k(B | Ionic osmotic pressure model Molecular recognition Ion-gating membrane | S-40 | 292 | |
Q $B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$B%7%s%]%8%&%`(B <$B0!NW3&!&D6NW3&N.BN$N9bEYMxMQ5;=Q$N?7E83+(B> | |||||
(9:40$B!A(B10:20) ($B;J2q(B $B:4F#(B $BA1G7(B) | |||||
Q303 | [$B>7BT9V1i(B] $BD60!NW3&MOG^MxMQ%W%m%;%98&5f3+H/;vNc$HE8K>(B | supercritical subcritical solvent | S-14 | 24 | |
(10:20$B!A(B12:00) ($B:BD9(B $BKY@n(B $B0&98!&FbED(B $BGn5W(B) | |||||
Q305 | $BD6NW3&Fs;@2=C:AGCf$K$*$1$k(BRe$B?(G^$K$h$kFs;@2=C:AG$N8w4T85(B | supercritical photoreduction CO2 | S-14 | 495 | |
Q306 | $B9b05Fs;@2=C:AGCf$G$ND62;GH%-%c%S%F!<%7%g%s$rMxMQ$7$?A!0]$NI=LL2~ | high-pressure liquid CO2 ultrasonic cavitation fiber | S-14 | 846 | |
Q307 | Heterogeneously Catalyzed Microwave-Solvothermal Synthesis of bioETBE | Solvothermal Microwave Ethyl tert-Butyl Ether | S-14 | 649 | |
Q308 | $B9b299b05?eCf$G$N%-%A%s(B2$BE|$NJQ49H?1~(B | Glucosamine Chitin Biomass | S-14 | 609 | |
Q309 | $B%/%m%m%U%'%N!<%k$N?eG.;@2=J,2r$N%U%'%s%H%s7?H?1~$K$h$kB%?J(B | hydrothermal oxidation Fenton-type reaction chlorophenol | S-14 | 235 | |
$B3X@8>^I=>4<0(B | |||||
R $B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$B%7%s%]%8%&%`(B <$B:`NA!&3&LLF$O@2q!VEII[5;=Q$HI=LL2C9)!W(B> | |||||
(10:00$B!A(B11:00) ($B:BD9(B $B>.NS(B $B90L@!&DT(B $B2B;R(B) | |||||
R304 | $B%J%N%U%!%$%P!<$H=$I|:^$rMQ$$$?<+8J=$I|@-KI?)%3!<%F%#%s%0(B | self-healing corrosion pH control | S-37 | 23 | |
R305 | $B%.;@F<:xBN$N(BCO2$B%l!<%6!<2CG.=hM}$K$h$kF3EEKl$N9g@.(B | printable electronics copper film | S-37 | 30 | |
R306 | $B6b7?$rMQ$$$?EI9)$K$*$1$kN3;RG;EY$NEG=PJP:9M=B,$K4X$9$k8&5f(B | Numerical analysis Pipe flow Particle trajectory | S-37 | 860 | |
(11:00$B!A(B12:00) ($B:BD9(B $B0B0f(B $BK-!&Bm(B $B7rB@O:(B) | |||||
R307 | $BG3NAEECSEE6K$NY{?e=hM}%W%m%;%9$K$*$1$k(BPTFE$BJ,I[%7%_%e%l!<%7%g%s(B | PEFC PTFE distribution fibrous structure | S-37 | 1008 | |
R308 | $B9bG;EYHyN3;RJ,;61U$N%l%*%m%8!<%7%_%e%l!<%7%g%s(B -$BN3;R4VAj8_:nMQ$N8z2L(B- | concentrated suspension rheology simulation particle interaction | S-37 | 901 | |
R309 | $B%9%m%C%H%@%$EII[$K$*$1$k30Mp$,%3!<%F%#%s%0%&%#%s%I%&$HKl8|$K5Z$\$91F6A(B | slot die coating distrebance coating window | S-37 | 185 | |
(13:00$B!A(B14:00) ($B:BD9(B $B5WJ](B $B9L;J!&5WJ](B $B@5 | |||||
R313 | [$B>7BT9V1i(B] $BM6F3<+8JAH?%2=$K$h$k%V%m%C%/%3%]%j%^!<$NH>F3BN@=B$9)Dx$X$N1~MQ(B | DSA Thin film Block copolymer | S-37 | 952 | |
R315 | O/W$B%(%^%k%7%g%s1UE)$N4V7gE*$J@\?(@~8eB`(B | emulsions droplet drying surfactants | S-37 | 55 | |
(14:00$B!A(B15:00) ($B:BD9(B $BEOJU(B $BKS;R!&0f>e(B $B85(B) | |||||
R316 | $B:.9gMOG^%U%#%k%`Fb$NAjJ,N%$KM?$($k4%Ag>r7o$N1F6A(B | coating phase separation drying path | S-37 | 701 | |
R317 | $B;k3PE*8mG'$N7@5!$H$7$F$NJ4N3BN$N1?F0>e$NITO"B3@-$N;XI82=$N;n$_(B | kinematic discontinuity parameterization misrecognition | S-37 | 575 | |
R318 | $B%_%/%mAjJ,N%$rMxMQ$7$?%7%j%s%@!<9=B$Kl$N8GDj2=(B | microphase-separated structure immobilization cylinder | S-37 | 895 | |
S $B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$B%7%s%]%8%&%`(B <$B:`NA!&3&LLF$O@2q!V:`NAAO=P$H3&LL@)8f$N?7E83+!W(B> | |||||
(10:20$B!A(B12:00) ($B:BD9(B $B?9Dg(B $B??B@O:!&0p_7(B $B?8(B) | |||||
S305 | pH$B8{G[$r;E;v$KJQ49$9$k%Y%7%/%k$N%(%M%k%.! | vesicle pH gradient generating mechanical work | S-33 | 26 | |
S306 | $B%]%k%U%#%j%s:xBN!?%J%U%?%l%s$N5e>uJ,;R=89gBN$rCr7?$H$7$?Cf6u%7%j%+%J%NN3;R$N?75,9g@.K!$H9=B$@)8f(B | tetraphenylporphyrincobalt(II) complex template method hollow silica nanoparticles | S-33 | 921 | |
S307 | $B3&LL3h@-:^$NJ,;R=89gBN9=B$$,Cf6u%7%j%+N3;R$N7ABV$KM?$($k1F6A(B | polyhedral shapes hollow silica particles self-assembly structures | S-33 | 533 | |
S308 | $B%3%m%$%IN3;RJ,;61U$N8:054%Ag%W%m%;%9$K$h$k%3%m%$%@%k%U%!%$%P!<$N7A@.(B | self-organization drying colloidal fibers | S-33 | 978 | |
S309 | $B@EEEKB;eK!$K$h$k%]%j%S%K%k%"%k%3!<%k$+$i$NB?9& | electrospinning carbon nanofiber surfactant | S-33 | 659 | |
U $B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$B%7%s%]%8%&%`(B <$B5!G=@-HyN3;R!$9bJ,;R!&%2%k%^%F%j%"%k$N9b5!G=2=!&?7E83+!&MQES3+H/!J:`NA!&3&LLIt2q!K(B> | |||||
(8:40$B!A(B9:00) ($B;J2q(B $B@6ED(B $B2BH~(B) | |||||
U300 | [$BM%=(O@J8>^(B] $BCbAG4^M-%]%j%^!<$rMQ$$$?%l%"%"!<%9%U%j!<;@Cb2=J*7V8wBN$N9g@.(B | oxynitride phosphor rare-earth free particle | S-36 | 11 | |
(9:00$B!A(B10:00) ($B:BD9(B $BD9Hx(B $BBgJe(B) | |||||
U301 | $B%3%"%7%'%k9=B$$r;}$D<'@-BN%J%NN3;R$N9g@.$HFC@-I>2A(B | Fe$16$N$2$ core-shell sintering | S-36 | 155 | |
U302 | $BJ.L8G.J,2rK!$K$h$k%]!<%i%9%+!<%\%sHyN3;R$N9g@.$HEE6K?(G^I>2A(B | Phenol-resin Carbon Spray-pyrolysis method | S-36 | 162 | |
U303 | $BD6NW3&?e$rMxMQ$7$?%b%N%+%k%\%s;@=$>~;@2=%3%P%k%H%J%NN3;R$N9g@.$HI>2A(B | cobalt oxide supercritical water surface modification | S-36 | 414 | |
(10:00$B!A(B11:00) ($B:BD9(B $B0KF#(B $BBgCN(B) | |||||
U304 | $B@EEEKB;eK!$K$h$k%J%NA!0]$rMQ$$$?%(%"%U%#%k%?$N:GE,9=B$2=(B | nanofiber air filter slip flow | S-36 | 159 | |
U305 | PEO$B$rE:2C$7$?Dc4^N(%J%NN3;RJ,;67O$N%l%*%m%8!<%3%s%H%m!<%k(B | rheology shear thickening polyethylene oxide | S-36 | 299 | |
U306 | $B4^?e@-%2%k>uJ* | dehydration of hydrogel functional porous media fluidized bed | S-36 | 758 | |
(11:00$B!A(B12:00) ($B:BD9(B $B4];3(B $B3X;N!&Ip0f(B $B9'9T(B) | |||||
U307 | $BE|M6F3BN$rMQ$$$?%9!<%Q!<%2%k2=:^$NAO@=$H%(%^%k%7%g%s%2%k$X$NE83+(B | gelators monosaccharides gel-emulsions | S-36 | 303 | |
U308 | $B?75,E42M66%R%"%k%m%s;@%O%$%I%m%2%k$N3+H/(B | ionically-cross-linked AHMP hyaluronic acid | S-36 | 671 | |
U309 | $B%$%*%s1UBNIt0L$rB&:?$K$b$D%0%i%U%H7?9bJ,;R$N9g@.$H%2%k:`NA$X$NE83+(B | ionic liquids poly(aspartic acid) derivative gel | S-36 | 965 | |
XD $B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$B%7%s%]%8%&%`(B <$BBh#1(B2$B2s%W%m%;%9%G%6%$%s3X@8%3%s%F%9%H(B> | |||||
(9:00$B!A(B12:00) ($B;J2q(B $BIpED(B $BOB9(!&;32<(B $BA1G7(B) | |||||
XD301 | $BBh(B12$B2s%W%m%;%9%G%6%$%s3X@8%3%s%F%9%H(B | process design | S-26 | 482 | |
(13:20$B!A(B14:00) ($B:BD9(B $B;32<(B $BA1G7(B) | |||||
XD314 | [$B>7BT9V1i(B] $B9-EgBg3X2=3X9)3X9V:B$K$*$1$k>pJs4XO"650i$X$N | education | S-26 | 481 | |
XD315 | [$B>7BT9V1i(B] $B2=3X%W%i%s%H$K$*$1$k99$J$k>J%(%M!&0BDj2=$X$N | plant operation | S-26 | 223 | |
(14:00$B!A(B15:40) ($B;J2q(B $BNkLZ(B $B9d!&^ | |||||
$BAm9gF$O@(B | |||||
XF $B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$B%7%s%]%8%&%`(B <$B4D6-It2q%7%s%]%8%&%`(B> | |||||
(8:40$B!A(B9:40) ($B:BD9(B $B9>F,(B $BLw9,(B) | |||||
XF300 | $B%U%m%s$N?75,%j%5%$%/%k%W%m%;%9$N3+H/$HNd5Q%7%9%F%`$X$N1~MQ(B | Flon Phase Equilibrium refrigerant | S-31 | 802 | |
XF301 | $BBg5$05Dc29%W%i%:%^$K$h$k(BCF4$BJ,2rFC@-(B | CF4 plasma decomposition | S-31 | 231 | |
XF302 | $BN3;R= | non-thermal plasma N,N-dimethylformamide packed bed reactor | S-31 | 480 | |
(9:40$B!A(B10:40) ($B:BD9(B $B;3ED(B $B=(>0(B) | |||||
XF303 | $B%"%k%_%I%m%9M3Mh(BAlPO4-n$B$rMQ$$$k(BVOC$B$N=|5n$K4X$9$k4pACE*8&5f(B | aluminum dross AlPO4-n gas adsorption | S-31 | 427 | |
XF304 | $B%Y%s%H%J%$%H$H%3!<%R!<^hM3MhC:2=J*$H$NJ#9g5[Ce:`$N@=B$$HFC@-I>2A(B | bentonite cahrcoal adsorbent | S-31 | 886 | |
XF305 | $B@PC:G3>FGS%,%9Cf$N?e6d=|5n$KE,$7$?N22=E4!&3h@-C:7O?e6d=|5n:^$N3+H/(B | Coal burning gas Mercury removal | S-31 | 385 | |
(10:40$B!A(B12:00) ($B:BD9(B $B5\K\(B $B1Q<#!&7&ED(B $B8w9((B) | |||||
XF306 | $B3h@-%3!<%/%9$K$*$1$k(BH2S$B5Z$S(BCOS$B5[CeB.EY$NDjNLE*I>2A(B | desulturization activated cokes adsorption rate | S-31 | 623 | |
XF307 | $BLZ | woody biomass aerobic fementation heat supply | S-31 | 896 | |
XF308 | $B8G1UJ,N%%W%m%;%9$rMQ$$$?(BCO2$BJ,N%2s<}%(%M%k%.!<$NDc8:(B | CCS amine solid-liquid separation process | S-31 | 988 | |
XF309 | CO2$BJ,N%2s<}MQ2=3X5[<}1U$NN22+;@2=J*$K$h$kNt2=!!(B-CO2$BJ,N%2s<}%(%M%k%.!<$X$N1F6AI>2A(B- | CCS amine degradation | S-31 | 991 | |
$B3X@8M%=(H/I=>^(B($B2>>N(B)$BI=>4<0(B | |||||
(13:20$B!A(B14:20) ($B:BD9(B $BF#ED(B $B8J;W?M(B) | |||||
XF314 | CO2$BJ,N%2s<}:`$NH?1~(B(2) 2$B5i%R%s%@!<%I%"%_%s(B | Absorption Amine Carbon dioxide | S-31 | 536 | |
XF315 | $B%"%_%s5[<}1UCf$NG.0BDj@-1v(B(HSS)$B:F@85;=Q$N3+H/(B | Amine Absorber Reclaimer Heat Stable Salt | S-31 | 928 | |
XF316 | $B>-Mh$NA45e$K$*$1$k%P%$%*%^%9%(%M%k%.!<@8;:%]%F%s%7%c%k$N?dDj(B | global warming biomass energy global potential | S-31 | 542 | |
(14:20$B!A(B15:00) ($B:BD9(B $B9b66(B $B?-1Q(B) | |||||
XF317 | $B%Q%k%9J|EE%W%i%:%^$rMQ$$$?%Y%s%<%s$NJ,2r(B | benzene plasma coexistence gas | S-31 | 20 | |
XF318 | $B?e>x5$6E7k$rMxMQ$7$?5$AjCfIbM7N3;R>uJ* | suspended particulate matter dust collection steam condensation | S-31 | 540 | |
XG $B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$B%7%s%]%8%&%`(B <$B | |||||
(9:00$B!A(B11:00) ($B:BD9(B $B7*86(B $B@6J8!&DZ0f(B $BL@CK(B) | |||||
XG301 | $B%$%*%s1UBN(B-$B%0%i%$%`:.9gMO1U$NJ*M}2=3XE*FC@-(B | ionic liquid glyme CO2 solubility | S-38 | 652 | |
XG302 | GC-Wilson$B<0$K$h$k8:052<$N(B2$B@.J,7ODj055$1UJ?9U$N?d;;(B | Vapor-Liquid Equilibrium Wilson Parameter Reduced Pressure | S-38 | 28 | |
XG303 | $BG.NO3X7rA4@~$rMQ$$$k1U1UJ,G[78?t$N?d;;(B | Thermodynamic consistency line liqui-liquid partition coefficient grand correlation | S-38 | 715 | |
XG304 | $B%$%*%s1UBN7O2=9)J*@-$N(BPCPCE$B!&(BASOGDB$B$K$h$kJ88%8!:w!&Aj4X!&?d;;(B | Physicochemical Properties Ionic Liquids PCPCE$B!&(BASOGDB | S-38 | 45 | |
XG305 | $B@.J,%U%!%_%j! | binary interaction parameter component family method BWR equation of state | S-38 | 452 | |
XG306 | $B5$1UJ?9U?d;;<0$NDj?t7hDjK!(B | vapor-liquid equilibria distillation NRTL equation | S-38 | 880 | |
(11:00$B!A(B11:40) ($B;J2q(B $B2<;3(B $BM52p(B) | |||||
XG307 | [$B>7BT9V1i(B] $B%^%k%A%9%1!<%k2=3X9)3X$K$h$kJ*@-$+$i5!G=@-:`NA@_7W$X$N | Properties Simulation Secondary Battery | S-38 | 843 |