A $B2q>l(B | |||||
---|---|---|---|---|---|
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$BFCJL%7%s%]%8%&%`(B SP-1. <$B:F@82DG=%(%M%k%.!< | |||||
(13:00$B!A(B16:40) ($B:BD9(B $B>>K\(B $B=(9T!&>>ED(B $B7=8g(B) | |||||
A112 | $B0';"!&
| SP-1 | 5 | ||
A113 | [$B>7BT9V1i(B] $BF|K\$N:F@82DG=%(%M%k%.!<$K4X$9$k@/:v(B | SP-1 | 999 | ||
A115 | [$B>7BT9V1i(B] $B:F@82DG=%(%M%k%.!<$N | SP-1 | 1000 | ||
A117 | [$B>7BT9V1i(B] $B:F@82DG=%(%M%k%.!<$N | SP-1 | 1001 | ||
$B5Y7F(B | |||||
A120 | [$B>7BT9V1i(B] $B:F@82DG=%(%M%k%.!<$N | SP-1 | 1002 | ||
A122 | [$B>7BT9V1i(B] $B%$%N%Y!<%7%g%s$r;Y$($k@oN,E*4pHW$N6/2=(B | SP-1 | 1003 | ||
A123 | [$B>7BT9V1i(B] $B?M:`0i@.$H%$%N%Y!<%7%g%s%O%V9=A[(B | SP-1 | 1004 | ||
B $B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$BIt2q%;%C%7%g%s(B SE-5. <$B0!NW3&!&D6NW3&$rMxMQ$7$?:G@hC<5;=Q(B> | |||||
(9:00$B!A(B10:20) ($B:BD9(B $B>>ED(B $B909,!&KRLn(B $B5.;j(B) | |||||
B101 | $BFs;@2=C:AG(B/$B%7%j%3%s%"%k%3%-%7%I(B/$B%]%j%^!<;0@.J,7O$NAjJ?9U(B | Phase behavior Carbon dioxide Polymer | SE-5 | 821 | |
B102 | $B9b05Fs;@2=C:AG$rMQ$$$?%]%j%^!<$N%,%i%9E>0\E@B,Dj$N?75,AuCV$N:n@.(B | Glass transition temperatures Carbon dioxide Polymer | SE-5 | 831 | |
B103 | $B%(%A%l%s(B+$B%X%-%5%s(B+$BB?J,;6%]%j%(%A%l%s7O$N9b299b05AjJ?9U(B | polydisperse polyethylene phase equilibria Sanchez-Lacombe EOS | SE-5 | 695 | |
B104 | $BD6NW3&Fs;@2=C:AG5Z$SG.?e$NAj>h:nMQ$K$h$kH?1~J,N%%W%m%;%9(B | Subcritical Water Supercritical Carbon Dioxide Reactive Separation | SE-5 | 828 | |
(10:40$B!A(B12:00) ($B:BD9(B $BBgED(B $B>; | |||||
B106 | $BFs;@2=C:AG(B/$BCbAG(B/$B%]%j%9%A%l%s7O$K$*$1$kMO2rEY$*$h$S3&LLD%NOB,Dj(B | Solubility Interfacial tension Polymer | SE-5 | 825 | |
B107 | $BD6NW3&Fs;@2=C:AG$rMQ$$$?%,%9K0OBMOBNJ.L84%Ag(B(PGSS)$BK!$K$h$k%F%*%U%#%j%sHyN3;R$NAO@=(B | Supercritical carbon dioxide PGSS Theophylline microparticles | SE-5 | 935 | |
B108 | [$BE8K>9V1i(B] $B%0%j!<%s%1%_%9%H%j!<$N$?$a$NBeBXMOG^$NAjJ?9U(B | Phase Equilibria green chemistry alternative solvent | SE-5 | 1006 | |
(13:00$B!A(B13:40) ($B;J2q(B $BBgEg(B $B5A?M(B) | |||||
B113 | [$B>7BT9V1i(B] $BMOG^OB35G0$NIaJW2=$K4p$E$/%=%U%HJ,;R=89g7O$N<+M3%(%M%k%.!<2r@O(B | Solvation Binding function Aggregates | SE-5 | 1007 | |
(13:40$B!A(B14:40) ($B:BD9(B $B>>NS(B $B?-9,!&6b5WJ](B $B8w1{(B) | |||||
B115 | $BD6NW3&N.BN@:N1Ec$rMQ$$$?E7A3J*Cj=P%(%-%9J,2h$KBP$9$kA`:n0x;R$N8z2L(B | supercritical fluid rectification fractionation | SE-5 | 516 | |
B116 | $B0!NW3&%V%?%sCj=PK!$K$h$k%P%$%*%V%?%N!<%kG;=LC&?e8&5f(B | bio-butanol butane extraction | SE-5 | 473 | |
B117 | $B%9%i%0N.$rMxMQ$7$?D6NW3&%(%^%k%7%g%sCj=P$K$h$kHyN3;RJ,;6MO1U$N:n@=(B | supercritical carbon dioxide slog flow emulsion extraction | SE-5 | 623 | |
(15:00$B!A(B16:00) ($B:BD9(B $B:4!9LZ(B $BK~!&@n?,(B $BAo(B) | |||||
B119 | $BGS%,%9=hM}MQ3h@-C:$ND6NW3&Fs;@2=C:AG$rMQ$$$?:F@8(B | Supercritical Carbon Dioxide Regeneration Activated Carbon | SE-5 | 429 | |
B120 | $BD6NW3&(BCO2$BJ70O5$2<$K$*$1$kB?9&@-%7%j%+$X$N?(G^6bB0A06nBN$N5[CeJ?9UB,Dj$H2r@O(B | supercritical impregnation metal precursor adsorption equilibria | SE-5 | 460 | |
B121 | $BH?1~B.EYO@$K4p$E$/D6NW3&(BCO2$BN.BNCf(B $B3H;678?t$N?75,?dDjJ}K!(B | supercritical fluid deposition diffusivity kinetics | SE-5 | 544 | |
(16:00$B!A(B17:00) ($B:BD9(B $BD.ED(B $BMN!&BgC](B $B>!?M(B) | |||||
B122 | $BH>F3BN%G%P%$%9@=B$MQD6NW3&4%Ag%W%m%;%9$+$i$N(BCO2$B2s<}(B | Supercritical CO2 recycle | SE-5 | 230 | |
B123 | $BD>@\%a%?%N!<%kG3NAEECS$N$?$a$N(BNafion$BKl$ND6NW3&Fs;@2=C:AG$K$h$k2~ | supercritical fluid direct methanol fuel cell polymer | SE-5 | 241 | |
B124 | $BD6NW3&Fs;@2=C:AGCf$K$*$1$k%]%j%$%_%I$N9b05>xCe=E9g(B | Supercritical carbon dioxide Polyimide Deposition | SE-5 | 630 | |
C $B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$BFCJL%7%s%]%8%&%`(B SP-3. <$B@$3&$r%j!<%I$9$kF|K\$N?eAG5;=Q!&G3NAEECS<+F0 | |||||
(10:00$B!A(B11:00) ($B:BD9(B $B5FCO(B $BN4;J(B) | |||||
C104 | [$B0MMj9V1i(B] $B?eAG%-%c%j%"MxMQ$N$?$a$NKl5;=Q(B | Chemical Hydrogen Carrier Membrane Reactor Hydrogen Separation | SP-3 | 972 | |
C105 | [$B0MMj9V1i(B] $B%Q%i%8%&%`KlJ,N%$rH<$&?eAG@=B$(B | Hydrogen production Membrane reactor Palladium | SP-3 | 973 | |
C106 | [$B0MMj9V1i(B] $B?eAG@=B$$HMxMQ$N5;=Q$N8=>u$H:#8e(B | Hydrogen Production Hydrogen Utilization Hydrogen Carrier | SP-3 | 974 | |
(11:00$B!A(B12:00) ($B:BD9(B $B>e5\(B $B@.G7(B) | |||||
C107 | [$B>7BT9V1i(B] $B?eAG%9%F!<%7%g%s$NIa5Z$K8~$1$? | hydrogen refueling production | SP-3 | 979 | |
C109 | [$B0MMj9V1i(B] $B?eAG@=B$5;=Q$H?eAG%9%F!<%7%g%s$X$NE83+$K$D$$$F(B | Hydrogen Production Unit | SP-3 | 980 | |
(13:00$B!A(B14:00) ($B:BD9(B $B;38}(B $BLT1{(B) | |||||
C113 | [$B>7BT9V1i(B] $BFb3UI\$K$*$1$k@oN,E*%$%N%Y!<%7%g%sAOB$%W%m%0%i%`(B(SIP)$B$K$*$1$k%(%M%k%.!<%-%c%j%"2]Bj$N ($BFb3UI\Am9g2J3X5;=Q%$%N%Y!<%7%g%s2q5D;vL36I(B) $BCfEg(B $B1Q>4(B | Hydrogen energy Energy carrier SIP | SP-3 | 977 | |
C115 | [$B0MMj9V1i(B] $B?@8M@=9]=j$K$*$1$k?eAG | Hydrogen Metal Hydride Compressor | SP-3 | 976 | |
(14:00$B!A(B15:00) ($B:BD9(B $B>e5\(B $B@.G7(B) | |||||
C116 | [$B>7BT9V1i(B] $B?eAG | Hydrogen Station Organic Hydrides | SP-3 | 975 | |
C118 | [$B0MMj9V1i(B] $B8GBN9bJ,;R7AG3NAEECS%"%N!<%I$K$*$1$k(BCO$B$N5[Ce5sF0(B | polymer electrolyte fuel cell anode carbon monoxide | SP-3 | 978 | |
(15:00$B!A(B16:00) ($B:BD9(B $B0f>e(B $B85(B) | |||||
C119 | [$B>7BT9V1i(B] $B?eAG%(%M%k%.!<<{5k$N8+DL$7$N8!F$$H2]Bj(B | Hydrogen Energy Fuel Cell Hydrogen Power Plant | SP-3 | 981 | |
C121 | [$B0MMj9V1i(B] $BFp(Bx$B@~$rMQ$$$?G3NAEECS?eJ,$N(Bin-situ$B2D;k2=(B | PEFC soft x-ray visualization | SP-3 | 982 | |
(16:00$B!A(B17:00) ($B:BD9(B $B;38}(B $BLT1{(B) | |||||
C122 | [$B0MMj9V1i(B] PEFC$BB?9& | PEFC catalyst layer mass transfer | SP-3 | 983 | |
C123 | [$B0MMj9V1i(B] $BN3;R6E=8$*$h$S5^B.4%Ag$,9=B$$H:Y9&$K5Z$\$91F6A$N8!F$(B | Colloid Drying process Tortuosity | SP-3 | 984 | |
C124 | [$B0MMj9V1i(B] $BG3NAEECSEE6K%9%i%j!<$N%l%*%m%8!2A$HEII[A`:n(B | Viscosity Colloidal stability Shear application | SP-3 | 985 | |
D $B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$BIt2q%7%s%]%8%&%`(B SY-21. <$B | |||||
(9:00$B!A(B10:00) ($B:BD9(B $B8~0f(B $B?B(B) | |||||
D101 | $BC_EECSMQB?9& | Multi-physics simulation porous electrode lithium ion battery | SY-21 | 77 | |
D102 | $BB?9& | 3-dimensional lithium-ion battery porous electrode theory diffusion length | SY-21 | 714 | |
D103 | $BC16K%;%k$rMQ$$$?%+!<%\%s%V%i%C%/$NEE5$2=3XFC@-(B | Carbon Black Lithium-ion battery Electrochemistry | SY-21 | 677 | |
(10:00$B!A(B11:00) ($B:BD9(B $B8E;3(B $BDL5W(B) | |||||
D104 | $B1U%Q%k%9%$%s%8%'%/%7%g%sK!$K$h$k%j%A%&%`%$%*%sEECSIi6KMQ%7%j%3%s(B/$BC:AG%J%NJ#9g:`NA$N@=B$(B | chemical vapor deposition lithium-ion battery anode material | SY-21 | 168 | |
D105 | $B:Y9&Fb9g@.$K$h$kHy>.$J&A(B-MnO2$B$H%+!<%\%s%2%k$NJ#9g2=(B | electrode material nano composite mesoporous carbon | SY-21 | 350 | |
D106 | $B?75,%J%H%j%&%`E4%1%$;@1v$N9g@.!&7k>=9=B$!&EE5$2=3XFC@-(B | Rechargeable battery Novel material Crystal structure analysis | SY-21 | 762 | |
(11:00$B!A(B12:00) ($B:BD9(B $BDE5W0f(B $BLP | |||||
D107 | $B%7%j%3%s%J%N%o%$%d!<$N%9%1!<%k%"%C%W9g@.$H!V2A(B | Silicon nanowires scale-up synthesis anode material | SY-21 | 711 | |
D108 | MnO2/NiOOH$B%U%!%$%P!<>uEE6K$rMQ$$$?(BFuel Cell/Battery(FCB)$B@56K@-G=8~>e$K4X$9$k8&5f(B | Fuel Cell/Battery system Fibrous electrode Electrodeposition method | SY-21 | 700 | |
D109 | $B%"%k%*!<%I@P7?N2;@E4%J%H%j%&%`$K$*$1$k9bB.%$%*%s3H;6%a%+%K%:%`$N2rL@(B | rechargeable battery neutron diffraction maximum entropy method | SY-21 | 743 | |
(13:00$B!A(B14:00) ($B;J2q(B $B@>B<(B $B82(B) | |||||
D113 | [$B>7BT9V1i(B] $BIwNOH/EE$N=PNOJQF0$H4KOB(B | Wind energy Power fluctuation Stabilization | SY-21 | 38 | |
(14:00$B!A(B15:00) ($B:BD9(B $BBgM'(B $B=g0lO:(B) | |||||
D116 | $B%j%A%&%`6u5$EECS@56K:Y9&9=B$$,(BLi2O2$B@O=PNL$KM?$($k1F6A(B | Lithium-Air battery mesoporous carbon pore structure | SY-21 | 625 | |
D117 | Electrodeposited CoMn LDHs highly reversible electrodes for pseudocapacitor | Supercapacitor electrodeposition CoMn LDHs | SY-21 | 80 | |
D118 | One-step unipolar pulse electrodeposition of HMn2O4/PPy/PSS hybrid film with high selectivity for recovery of lithium from seawater | Lithium ions Electroactive film Selectivity | SY-21 | 81 | |
(15:00$B!A(B16:20) ($B:BD9(B $B?y;3(B $B@5OB(B) | |||||
D119 | $B%W%i%:%b%K%C%/%]!<%i%9(BSi$BB@M[EECS$N%J%N9=B$@)8f$HJQ498zN($NM=B,(B | Solar Cell Porous Si Simulation | SY-21 | 792 | |
D120 | One-Pot Solution Synthesis of Small Size Indium Nanoparticles and their application for Si nanowires solar cells | indium nanoparticles one-pot synthesis solar cell | SY-21 | 748 | |
D121 | [$BE8K>9V1i(B] $B | solar cells thin films wafer bonding | SY-21 | 211 | |
(16:20$B!A(B16:40) ($B;J2q(B $B@>B<(B $B82(B) | |||||
$B<+M3F$O@!J | |||||
E $B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$BIt2q%7%s%]%8%&%`(B SY-20. <$BKl;:6H5;=Q%;%C%7%g%s(B2015> | |||||
(11:00$B!A(B12:00) ($B:BD9(B $B>>;3(B $B=(?M(B) | |||||
E107 | $BKlJ,N%$rMQ$$$??e=hM}5;=Q$N;vNc>R2p(B | wastewater treatment water recycle drinking water | SY-20 | 394 | |
E108 | $B?e=hM}Kl$N%U%!%&%j%s%02r@O!&Dc8:5;=Q(B | reverse osmosis membrane fouling visualization | SY-20 | 140 | |
E109 | MF/UF$BKl5Z$S(BRO$BKl0BDj1?E>$K8~$1$?6E=8=hM}$N1F6A(B | MF/UF and RO membrane Coagulation agent Organic substance sensor | SY-20 | 607 | |
(13:00$B!A(B15:40) ($B:BD9(B $BLnB<(B $B4490(B) | |||||
E113 | $B002=@.%1%_%+%k%:$NKl$m2a5;=Q>R2p(B | Membrane Clarification | SY-20 | 175 | |
E114 | $B%/%i%lCf6u;eKl$NFCD9$*$h$S;vNc>R2p(B | hollow fiber membrane hydrophilic water treatment | SY-20 | 901 | |
E115 | $B%]%j%"%_%ICf6u;eKl$N3+H/(B | hollow fiber membrane polyamide filter | SY-20 | 141 | |
E116 | $BCf6u;eKl$rMQ$$$?(BMBR $B%7%9%F%`$N3+H/$HE,MQ;vNc(B | Membrane Bioreactor Hollow Fiber Membrane Wastewater Treatment | SY-20 | 833 | |
E117 | $B4I>u(BUF$BKl$rMQ$$$?Ae307?Kl$m2a%7%9%F%`$N1?E>FC@-(B | tubular membrane ultrafiltration water treatment | SY-20 | 662 | |
$B5Y7F(B | |||||
E119 | $B3$?eC8?e2=$K$*$1$kKl1x@wJ* | seawater desalination reverse osmosis fouling | SY-20 | 261 | |
E120 | $B3$?eC8?e2=MQ;0?];@%;%k%m!<%9Cf6u;e7?5U?;F)Kl$N3+H/;vNc$HCfEl0h$N;vNc(B | Reverse Osmosis Membrane for Seawater Desalination Cellulose Tri-Acetate Hollow Fiber | SY-20 | 307 | |
(15:40$B!A(B17:00) ($B:BD9(B $B>>J}(B $B@5I'(B) | |||||
E121 | $B%(%A%l%s%W%m%;%9$X$NKlJ,N%5;=Q$NE,MQ2DG=@-(B | ethylene production membrane separation | SY-20 | 580 | |
E122 | $BKlJ,N%MQ%^%/%m%]!<%i%9Hs>= | macroporous supports amorphous silica membrane separator | SY-20 | 574 | |
E123 | $B9b%7%j%+(BCHA$B7?%<%*%i%$%HKl(B(ZEBREX)$B$N?)IJMQES$X$N1~MQ(B | Dehydration zeolite membranes CHA | SY-20 | 576 | |
E124 | $B%<%*%i%$%HKlJ,N%$NE83+(B | zeolite membrane separation | SY-20 | 579 | |
F $B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$BIt2q%7%s%]%8%&%`(B SY-14. <$B8GAj$NIJ=@O5;=Q$K4X$9$k%7%s%]%8%&%`!J:`NA!&3&LLIt2q!K(B> $B$3$N%7%s%]%8%&%`$N9V1i;~4V$O(B $BH/I=#1#2J,!\F$O@#8J,(B $B$G$9!#(B | |||||
(9:00$B!A(B10:40) ($B:BD9(B $BA0ED(B $B8w<#(B) | |||||
F101 | $B%7%_%e%l!<%7%g%s$K$h$kM-5!J*7k>=$N3K2=!&@.D9B.EY%Q%i%a!<%?;;=P(B | nucleation rate growth rate simulation | SY-14 | 597 | |
F102 | $B?e;@2=%9%H%m%s%A%&%`(B8$B?e1v7k>=$rE:2C$7$?1v2=%+%k%7%&%`(B6$B?e1vM;1U$N2aNd5Q29EY$K5Z$\$9 | Nucleation Melt Heat Storage | SY-14 | 22 | |
F103 | N2$B%U%!%$%s%P%V%k$HIOMOG^$NJ;MQ$K$h$k%0%j%7%s$N>=@O8=>](B -$BIOMOG^$N | glycine antisolvent crystallization fine-bubbles | SY-14 | 869 | |
F104 | ASP3026$B$N7k>=B?7A@)8f@oN,$H%$%s%i%$%s%i%^%sJ,8wK!$rMQ$$$?MO1U9=B$%b%K%?%j%s%0(B | Polymorph Raman | SY-14 | 19 | |
F105 | $B | Reaction Crystallization Size Control Pt Particle | SY-14 | 712 | |
(10:40$B!A(B12:00) ($B:BD9(B $BA%1[(B $BK.IW(B) | |||||
F106 | $B4T85>=@O$K$*$1$k(BpH$B$K$h$k(BAu$BN3;R$NN37B@)8f$*$h$SN3;R@.D95!9=$N2rL@(B | reaction crystallization pH sub-micron Au particle | SY-14 | 947 | |
F107 | $B7Z>F(Bdolomite$B7|By1U$NC:;@2=H?1~$K$h$k(BMg$BC:;@1v$N>=@O$HJ,N%(B | dolomite carbonation magnesium carbonate | SY-14 | 786 | |
F108 | $BH?1~>=@OK!$K$h$kC:;@1vHy7k>=$NIJ | $BH?1~>=@O(B $BC:;@1vHyN3;R(B $BIJ | SY-14 | 133 | |
F109 | $B%I%i%`%U%l!<%+$rMQ$$$?6&>=E`7k>=@OK!$K$h$k(B(NH4)2SO4-Na2SO4-H2O$B7O$+$i$NG;=LN20B1U2s<}$NJ,N%FC@-$=$NB>$K$D$$$F(B | Drum flaker Eutectic point freezing concentration | SY-14 | 433 | |
(13:00$B!A(B14:20) ($B:BD9(B $BEgFb(B $B | |||||
F113 | $B;iKC;@$NM;1U>=@O$K$*$1$kMO | melt crystallization effective distribution coefficient solute distribution theory | SY-14 | 171 | |
F114 | Cr($B-7(B)$BB8:_2<$G$NN2;@%+%j%&%`7k>=$NMO2r$K$*$1$k3F7k>=LL$NI=LL2r@O(B | Dissolution Behavior Additives Energy Dispersive X-ray Spectrometry | SY-14 | 538 | |
F115 | $B9b05NO2<$G$NL5EE2r%K%C%1%k!>%j%s$a$C$-$K4X$9$k | electroless plating high pressure hydrogen | SY-14 | 172 | |
F116 | $B;0;@2=%b%j%V%G%s?eOBJ*E:2C$K$h$k(BZMH$B7k>=$NJILLIUCeM^@)(B | Nuclear fuel reprocessing Zirconium molybdate hydrate Nucleation | SY-14 | 675 | |
(14:20$B!A(B15:40) ($B:BD9(B $BCfB<(B $B0lJf(B) | |||||
F117 | $B%*%$%j%s%0%"%&%H$r7PM3$9$k7k>=2=8=>]$NB?@.J,Aj?^$rMQ$$$?2r@O(B | Crystallization Oiling-out phenomena Phase diagram | SY-14 | 176 | |
F118 | $B%*%$%k2=$r2p$7$?%0%k%?%A%*%s%J%H%j%&%`7k>=$N>=@O(B | crystallization solvate amorphous | SY-14 | 582 | |
F119 | $B@EEEE*Aj8_:nMQ$r6nF0NO$H$7$?%9%H%l%W%H%"%S%8%s$N7k>=2=(B | Electrostatic interaction Crystallization Streptavidin | SY-14 | 512 | |
F120 | $B0[Aj3&LL$r>=@O>l$H$7$?7k>=N3;R72$N@.D98=>]$N4Q;!$H$=$NI>2A(B | Crystallization Templated crystallization Different Phase Interface | SY-14 | 178 | |
(15:40$B!A(B17:20) ($B:BD9(B $B8^==Mr(B $B9,0l(B) | |||||
F121 | $B%"%_%m%$%I@-%?%s%Q%/ | Amyloid Nucleation Bio-interface | SY-14 | 933 | |
F122 | $BDKIw$K$*$1$kG";@@O=P$KM?$($k29EY$N1F6A(B | crystallization uric acid gout | SY-14 | 813 | |
F123 | $B5U?;F)Kl$K$h$kMO | Reverse Osmosis Crystallization Concentration Polarization | SY-14 | 558 | |
F124 | $B%7%/%m%G%-%9%H%j%s7O6bB0M-5!9=B$BN$X$NK'9aB2%+%k%\%s;@$N5[Ce(B | Adsorption Carboxylic acid Cyclodextrin | SY-14 | 116 | |
F125 | $B%(%T%,%m%+%F%-%s%,%l!<%H$N%7%/%m%G%-%9%H%j%sJq@\2=9gJ*$N7k>=@.D9B.EY$N2r@O(B | Clathrate Crystallization Cyclodextrin | SY-14 | 781 | |
G $B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$BIt2q%7%s%]%8%&%`(B SY-18. <$BN3;R!&N.BN7OJ,N%%W%m%;%9$N:GA0@~(B> | |||||
(9:00$B!A(B10:00) ($B:BD9(B $B6aF#(B $B@65W(B) | |||||
G101 | $BH/9Z7|By1U$N%9%F%C%W>:0505:q(B | solid-liquid separation expression fermentation broth | SY-18 | 823 | |
G102 | $B%W%i%9%_%I(BDNA$B$N%"%U%#%K%F%#Kl_I2a!&@:@=$K$*$1$k6]BN$+$i$NMO=PK!$N8!F$(B | affinity membrane filtration purification plasmid DNA | SY-18 | 848 | |
G103 | $B:YK&LOJo%Y%7%/%k$NKl_I2aFC@-$NI>2A(B | membrane filtration vesicle cell | SY-18 | 858 | |
(10:00$B!A(B10:40) ($B:BD9(B $BCfB<(B $B0lJf(B) | |||||
G104 | $B%3%m%$%I$NKl_I2a$K$*$1$k_I2a05NO$N5^JQ$KH<$&KlF)2aN.B+$N2aEOFC@-(B | membrane filtration permeation flux filtration pressure | SY-18 | 870 | |
G105 | $BD62;GH>H | dissolved air freeze concentration ultrasonic irradiation | SY-18 | 320 | |
(10:40$B!A(B11:20) ($B:BD9(B $B9b2,(B $BBgB$(B) | |||||
G106 | $B%G%-%9%H%i%sMO1U$rF)2a$7$?Mf@{>u%A%e!<%V$K$h$k%3%m%$%IN3;R$NJ,N%(B | flow dextran solution colloid separation | SY-18 | 29 | |
G107 | $BN2;@1t$N>=@O>r7o$H_I2aFC@-$N4X78(B | crystallization filtration Lead sulfate | SY-18 | 561 | |
(11:20$B!A(B12:00) ($B;J2q(B $B@n:j(B $B7rFs(B) | |||||
G108 | [$BE8K>9V1i(B] $BB?9& | depth filter microfiltration porous membrane | SY-18 | 210 | |
(13:00$B!A(B13:40) ($B;J2q(B $BF~C+(B $B1Q;J(B) | |||||
G113 | [$BE8K>9V1i(B] $B9)6HMQ%U%#%k%?!<$N3+H/F08~$H5;=QE*2]Bj(B | filtration solid-liquid separation numerical model | SY-18 | 956 | |
(13:40$B!A(B14:40) ($B:BD9(B $B8~0f(B $B9/?M(B) | |||||
G115 | $B9b05$K$h$kHy@8J*:YK&$NGK2u$,DjB._I2a5sF0$K5Z$\$91F6A(B | constant-rate filtration cellular destruction high pressure | SY-18 | 860 | |
G116 | $BHy@8J*Be | microfiltration polysaccharide protein | SY-18 | 854 | |
G117 | $B%S!<%:%_%kGK:U$7$?9ZJl7|By1U$N@:L)_I2aFC@-(B | microfiltration yeast cell disruption | SY-18 | 862 | |
(14:40$B!A(B15:40) ($B:BD9(B $BEDCf(B $B9'FA(B) | |||||
G118 | $B4uGv%3%m%$%I$N@:L)_I2aFC@-$HKl9=B$$N4X78$N%b%G%j%s%0(B | microfiltration dilute colloids membrane structure | SY-18 | 868 | |
G119 | $B@:L)_I2a$K$*$1$k%U%!%&%j%s%05!9=$H%U%!%&%j%s%0NL$rF1;~7hDj$9$k4JJXK!$N3+H/(B | fouling microfiltration fouling index | SY-18 | 872 | |
G120 | $BJ?HD7?(BMF$BKl$K$*$1$k%1!<%/AX8|$5$N@)8f(B(4) | Membrane Filtration Aeration Flow Flow Rate Distribution | SY-18 | 489 | |
(15:40$B!A(B16:20) ($B:BD9(B $BJR6M(B $B@?G7!&3Q(B $BGnL@(B) | |||||
G121 | $B9bI=LL@Q$rM-$9$k%W%j!<%D%U%#%k%?!<$K$*$1$k%1!<%/7A@.2aDx$N%b%G%k2=(B | pleated filter cake filtration model analysis | SY-18 | 945 | |
G122 | $B5U?;F)1s?4K!$K$h$k%?%s%Q%/ | centrifugation reverse osmosis osmotic pressure | SY-18 | 440 | |
H $B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$BIt2q%7%s%]%8%&%`(B SY-1. <$B@8J*>pJsMxMQ$N?JJb$H8=>u(B> | |||||
(13:00$B!A(B13:40) ($B;J2q(B $BARED(B $BGnG7(B) | |||||
H113 | [$B>7BT9V1i(B] $B@8J*?J2=$r0z$-5/$3$7$?0dEA;R%9%Z%/%H%k$N?J2=E*JQ2=(B | $B?J2=(B $B%2%N%`(B $BBe | SY-1 | 550 | |
(13:40$B!A(B14:20) ($B:BD9(B $B@6?e(B $B9@!&Bl8}(B $B>:(B) | |||||
H115 | $BCN<1%Y!<%9 | biomedical informatics bioinformatics omics | SY-1 | 58 | |
H116 | $B93BN@8;:6/2=$N$?$a$N(BCHO$B:YK&%a%?%\%m!<%`$NE}7W2r@O(B | CHO Trehalose LASSO | SY-1 | 137 | |
(14:20$B!A(B15:00) ($B;J2q(B $BBl8}(B $B>:(B) | |||||
H117 | [$B>7BT9V1i(B] $B | molecular evolution RNA bacteriophage | SY-1 | 371 | |
(15:00$B!A(B16:00) ($B:BD9(B $B9b66(B $B9-IW!&ARED(B $BGnG7(B) | |||||
H119 | 13C$B%U%i%C%/%92r@O$K4p$E$/%0%j%;%m!<%kC:AG8;$K$*$1$kBgD26]$NCf?uBe | 13C-Metabolic flux analysis Glycerol Escherichia coli | SY-1 | 687 | |
H120 | Synechocystis sp. PCC6803$B$N%(%?%N!<%k@8;:$K$*$1$kBe | cyanobacteria genome scale model ethanol production | SY-1 | 480 | |
H121 | $BSL3P$N>pJs=hM}5!9=$r4p$K$7$?G]M\>uBVG'<1(B | biological information olfactory process state recognition | SY-1 | 299 | |
I $B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$BIt2q%7%s%]%8%&%`(B SY-11. <$B4D6-It2q%7%s%]%8%&%`(B> | |||||
(9:00$B!A(B10:20) ($B:BD9(B $BCf:j(B $B@6I'!&MxC+(B $BfFJ?(B) | |||||
I101 | $B%i%8%"%k%&%'%k$r3hMQ$7$?860LCVEZ>m>t2=5;=Q$N3+H/(B-$B%7%9%F%`$N35MW(B | soil remediation radial well | SY-11 | 389 | |
I102 | $B%i%8%"%k%&%'%k$r3hMQ$7$?860LCVEZ>m>t2=5;=Q$N3+H/(B-Pb$B1x@wEZ>m>t2=5;=Q(B | soil remediation radial well | SY-11 | 437 | |
I103 | $B%i%8%"%k%&%'%k$r3hMQ$7$?860LCVEZ>m>t2=5;=Q$N3+H/(B-$BEZAXFb(B3$B | soil remediation analysis radial well | SY-11 | 382 | |
I104 | $B%i%8%"%k%&%'%k$r3hMQ$7$?8=0LCVEZ>m>t2=5;=Q$N3+H/(B-$BB?@.J,7O1x@w$KBP1~$9$k>t2=5;=Q(B | remediation technology toxic substance water purificaton | SY-11 | 534 | |
(10:40$B!A(B12:00) ($B:BD9(B $BFs5\(B $BA1I'!&>.6L(B $BAo(B) | |||||
I106 | $B9ZJl$N@\ | food waste acid-degrading yeast high rate composting | SY-11 | 699 | |
I107 | $B9b05J. | Sludge reduction Activated sludge Microbial population | SY-11 | 896 | |
I108 | $B%$%s%I%M%7%"E%C:2P:RM^@)$N$?$a$N4D6-G[N87?>C2P:^$N@-G=I>2A(B | peat fire soap firefighting agent | SY-11 | 898 | |
I109 | $B%H%^%H:OG];D^V$N9%5$@-H/9Z$rMxMQ$7$?Fs;@2=C:AG6!5k5;=Q$N3NN)(B | composting rice husk ammonia | SY-11 | 847 | |
$BIt2q%7%s%]%8%&%`(B SY-12. <IPCC$BBh#5 | |||||
(13:00$B!A(B14:20) ($B:BD9(B $B | |||||
I113 | [$B>7BT9V1i(B] IPCC$BBh8^2AJs9p=q:n@.$K;22C$7$F(B $B!AE}9gJs9p=q$H4KOBJs9p=q!V;:6H>O!W$N>R2p!A(B | IPCC Synthesis report Industry | SY-12 | 851 | |
I115 | [$B>7BT9V1i(B] IPCC$BBh(B1$B:n6HIt2q(B:$BJ*M}E*2J3X:,5r!]5$8u%b%G%k$K$h$k>-MhM=B,(B | global warming climate model climate change | SY-12 | 166 | |
(14:20$B!A(B16:20) ($B:BD9(B $B9uBt(B $B8|;V(B) | |||||
I117 | [$B>7BT9V1i(B] $BA45e5,LO(B $B$N5$8uJQF0%j%9%/!!!A(BIPCC$BBh(B5$B2AJs9p=q$H$=$N8e$N8&5f!A(B | climate change impacts adaptation IPCC | SY-12 | 163 | |
I119 | [$B>7BT9V1i(B] IPCC-WG3$B$NBh(B5$B-MhE8K>(B | CO2 reduction scenarios Mitigation technologies Advanced technologies | SY-12 | 164 | |
I121 | [$B>7BT9V1i(B] COP21$B$K8~$1$?9q:]8r>D$H29CH2=BP:v$N:G?7F08~(B | COP21 climate change negotiations climate policies | SY-12 | 571 | |
(16:20$B!A(B17:20) ($B:BD9(B $B7&ED(B $B8w9(!&>.6L(B $BAo(B) | |||||
I123 | $B?eG.=hM}$7$??)IJGQ4~J*$N9bB.%3%s%]%9%H2=(B | food waste hydrothermal treatment furan-degrading fungus | SY-11 | 629 | |
I124 | $B1v2=F<4^M-(BDMSO$BMOG^$rMQ$$$?5.6bB02s<}$H6b$N%^%$%/%mN3;R@=B$(B | Precious metals Micrometer scale particle Organic solvent | SY-11 | 24 | |
I125 | $B%"%k%_%J@=B$;~$NGQ4~J*@VE%$NN2;@CfOB2~ | Bauxite Residue (Red Mud) In-situ Remediation Bipolar-membrane Electrodialysis | SY-11 | 180 | |
J $B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$BIt2q%7%s%]%8%&%`(B SY-5. <$B>pJsE}9g$H%b%G%j%s%0%"%W%m!<%A(B> | |||||
(13:00$B!A(B14:20) ($B:BD9(B $B@D;3(B $BFX!&HxF#(B $B@65.(B) | |||||
J113 | [$BE8K>9V1i(B] $BCf>.4k6H$K$*$1$k4D6-G[N87?%W%m%;%9@_7W(B | Small and medium-sized enterprises Process design Life cycle management | SY-5 | 251 | |
J115 | [$BE8K>9V1i(B] $BCO0h%P%$%*%^%9;q8;$NMxMQ%7%9%F%`$N@_7W$K$*$1$k%b%G%k2=$NLr3d(B | Co-design Biomass Integration | SY-5 | 560 | |
(14:20$B!A(B15:40) ($B:BD9(B $BJ?Hx(B $B2mI'!&;3ED(B $BL@(B) | |||||
J117 | [$BE8K>9V1i(B] $B3$30%W%m%8%'%/%H!&%^%M%8%a%s%H$K$*$1$k%7%9%F%`%:!&%"%W%m!<%A!AM}O@!&5;=Q!&E8K>!A(B | Project Management Risk | SY-5 | 559 | |
J119 | [$BE8K>9V1i(B] $B>pJsDL?.%$%s%U%i$r3hMQ$9$k$3$l$+$i$N2=3X%W%i%s%H(B | Internet of Things Cloud Computing Big Data Analytics | SY-5 | 327 | |
(15:40$B!A(B16:40) ($B:BD9(B $BEgED(B $B9T63!&?y;3(B $B90OB(B) | |||||
J121 | CbLW-PLS$B$K$h$kA`6H>uBV$N2D;k2=$HM=B,$K4p$E$/9bO'1?E>;Y1g(B | Blast Furnace Operation support Dimensionality reduction | SY-5 | 26 | |
J122 | $B%7%j%3%s%&%'!<%O$NIJ | silicon wafer process planning quality estimation | SY-5 | 375 | |
J123 | $B!VCY1d5vMFNN0h!W$K4p$E$/%W%m%8%'%/%H4IM} | project management model PERT vector space | SY-5 | 810 | |
(16:40$B!A(B17:00) ($B;J2q(B $B?y;3(B $B90OB(B) | |||||
$BAm9gF$O@(B | |||||
K $B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$BIt2q%7%s%]%8%&%`(B SY-16. <$B3&LL@)8f$K$h$k:`NA%W%m%;%C%7%s%0$N?7E83+!J:`NA!&3&LLIt2q!K(B> $B$3$N%7%s%]%8%&%`$N9V1i;~4V$O(B $BH/I=#1#2J,!\F$O@#8J,(B $B$G$9!#(B | |||||
(9:00$B!A(B9:20) ($B;J2q(B $B@6ED(B $B2BH~(B) | |||||
K101 | [$BE8K>9V1i(B] $B3&LL@)8f$K$h$k:`NA%W%m%;%C%7%s%0$N?7E83+!!!A?7J,2J2qAO@_$K8~$1$F!A(B | surface | SY-16 | 548 | |
(9:20$B!A(B10:00) ($B;J2q(B $B>.Ln(B $BEX(B) | |||||
K102 | [$B>7BT9V1i(B] $B%5%V%_%/%m%s%5%$%:$NC1J,;6$J9u?'N3;R$N@:L)9g@.$H9=B$?':`NA$X$N1~MQ(B | black particle structural color polydopamine | SY-16 | 554 | |
(10:00$B!A(B10:40) ($B:BD9(B $BHS_7(B $B9';J(B) | |||||
K104 | 2$B@.J,N3;R$N<+8JAH?%2=$rMxMQ$7$?2DF0BNFbJq7?%3%m%$%I7k>=$N:n@=(B | self-assembly bimodal size distribution non-close-packed | SE-16 | 683 | |
K105 | $B<'@-%J%NN3;R$rFbJq$7$?B?9&@-G[0L9bJ,;R(BHKUST-1$B$N5$CfO"B39g@.(B | hybrid materials spray-drying Fe3O4 nanoparticles | SY-16 | 269 | |
(13:00$B!A(B13:40) ($B;J2q(B $B>.Ln(B $BEX(B) | |||||
K113 | [$B>7BT9V1i(B] $BI.5-6q$N5;=Q(B | $B%\!<%k%Z%s(B $B=a3j(B $B4iNAJ,;6(B | SY-16 | 551 | |
(13:40$B!A(B14:20) ($B:BD9(B $B5WJ](B $BM%(B) | |||||
K115 | $BEE>l1~Ez@-%3%"FbJq7?Cf6uN3;R$N9=B$@)8f$K4X$9$k8!F$(B | hollow particle electric field structure control | SE-16 | 310 | |
K116 | $BN%;6N3;R72$NN.F0$N;k3P0u>]$r$H$i$($k | characteristic visual impression fluidized particles randomized instantaneous distribution | SY-16 | 247 | |
(14:20$B!A(B15:00) ($B;J2q(B $B@6ED(B $B2BH~(B) | |||||
K117 | [$B>7BT9V1i(B] $B0[Aj3&LL$rMxMQ$7$?%J%N9=B$@)8f$H1~MQ(B | polymer material functionalization interfacial control | SY-16 | 376 | |
(15:00$B!A(B16:00) ($B:BD9(B $B | |||||
K119 | $BDcJ,;R%2%k2=:^$rMQ$$$?9bFbAjHf%2%k%(%^%k%7%g%s$ND4@=(B | gelators gel emulsions carbohydrates | SY-16 | 731 | |
K120 | $B%$%*%s@-4629@-%2%k$N6bB0%$%*%s$N5[C&CeFC@-$K41G=4p$,M?$($k1F6A(B | thermosensitive gel adsorption metal ion | SY-16 | 603 | |
K121 | $B%"%k%.%s;@%+%k%7%&%`%2%k$N%2%k2=;~4VB,DjK!$N8!F$(B | Gelling time Calcium lginate gel Concentration dependence | SY-16 | 809 | |
(16:00$B!A(B16:40) ($B;J2q(B $B>.Ln(B $BEX(B) | |||||
$BAm9gF$O@(B | |||||
L $B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$BIt2q%7%s%]%8%&%`(B SY-17. <$BCj=P!&%$%*%s8r49!&5[Ce$N:G?7F08~(B> | |||||
(13:00$B!A(B13:40) ($B:BD9(B $BBg:d(B $BPR8c(B) | |||||
L113 | $B9bL)EY2=$K$h$k%+!<%\%s%2%k$N%a%?%s5[B"FC@-$N8~>e(B | Carbon cryogel Methane storage Sol-gel polycondensation | SY-17 | 57 | |
L114 | $BD>8rN.G.8r494o7?5[Ce4o$rMQ$$$?6uNd<0%G%7%+%s%H%7%9%F%`$N=|<>5sF0(B | Desiccant system Dehumidification behavior Air cooling | SY-17 | 588 | |
(13:40$B!A(B14:40) ($B:BD9(B $B7&ED(B $B8w9((B) | |||||
L115 | $BJ,;R$U$k$$C:AG$rMQ$$$?(BVSA$B$K$h$k%a%?%s!&Fs;@2=C:AG!&?e>x5$:.9g%,%9$NJ,N%$H?e>x5$$N1F6A(B | adsorption carbon dioxide biogas | SY-17 | 455 | |
L116 | $B%7%j%+%2%kAX$N?e>x5$5[CeB.EY$KM?$($kAXFbG.EAF3EY$N1F6AI>2A(B | adsorption silica-gel thermal conductivity | SY-17 | 573 | |
L117 | $B2r@O2r$H(BCMBR$BK!$rAH$_9g$o$;$?N3;RFb3H;678?t$N7hDj(B | Concentration Decay Curve Intraparticle Diffusivity Analytical Solution | SY-17 | 289 | |
(15:00$B!A(B16:00) ($B:BD9(B $B2.Ln(B $B7.(B) | |||||
L119 | $B%S%?%_%s(BE$BN`$HM7N%;iKC;@$N6%Ah5[Ce5!9=$N2rL@(B | adsorption ion-exchange resin vitamin E | SY-17 | 769 | |
L120 | Treatment of Acid Mine Drainage Using Indonesian Natural Zeolite | Indonesian natural zeolite Heavy metals adsorption Treatment of acid mine drainage | SY-17 | 325 | |
L121 | $B%P%$%*%^%9M3MhM-MQJ* | zeolite separation enrichment adsorption | SY-17 | 806 | |
(16:00$B!A(B17:00) ($B:BD9(B $B9>F,(B $BN50l(B) | |||||
L122 | $B%7%/%m%G%-%9%H%j%s7O6bB0M-5!9=B$BN$N7k>=@.D9(B | Crystallization Inclusion Cyclodextrin | SY-17 | 115 | |
L123 | $B@8BNJ,;RJ,N%$N$?$a$N%0%i%$%3%b%N%j%9$ND4@=$H1~MQ(B | monolith bioseparation saccharide | SY-17 | 836 | |
L124 | $B%+!<%\%s%2%k%^%$%/%m%O%K%+%`$rMQ$$$?%U%'%N!<%k$NO"B3J,N%(B | ice templating method phenol separation high-throughput separation | SY-17 | 194 | |
M $B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$BIt2q%;%C%7%g%s(B SE-19. <$BJ,N%%W%m%;%9It2q%;%C%7%g%s(B> | |||||
(9:00$B!A(B10:20) ($B:BD9(B $BGO1[(B $BBg!&0l?9(B $BM&?M(B) | |||||
M101 | Application of Side-Column DWCs to Quaternary Systems | Energy saving Distillation design Side-column DWC | SE-19 | 10 | |
M102 | $BHy>.N.O)$rMxMQ$7$?>xN1AuCV$NJ,N%FC@-$K$D$$$F(B | Distillation Microchannel Vapor-liquid equilibrium | SE-19 | 308 | |
M103 | $B4629@-9bJ,;R%2%k$N1UAj(B/$B5$Aj?e$N5[<}5sF0$K4X$9$k8&5f(B | thermosensitive gel water vapor adsorption | SE-19 | 639 | |
M104 | $B29EY1~Ez@-Kl$NJ,;RF)2aFC@-$K5Z$\$92M66:^E:2C$N8z2L(B | PNIPAM Cross-linker Membrane Separation | SE-19 | 84 | |
(10:40$B!A(B12:00) ($B:BD9(B $B:4Ln(B $B5*>4!&:4F#(B $BD> | |||||
M106 | $B<+8JAH?%2=Kl$N%G%6%$%s$K$h$kJ,;RG'<15!G=$N@)8f$*$h$S$=$N1~MQ(B | Membranome Liposome Chiral Recognition | SE-19 | 874 | |
M107 | $B0aN`4%AgMQ8:054%Ag5!$N;n:n(B | Vacuum drying system Textile fibers Energy saving | SE-19 | 324 | |
M108 | $B%O%$%I%l!<%H2=%,%9J,N%K!$NJ,N%@-G=$K5Z$\$9%O%$%I%l!<%HJ,2r>r7o$N1F6A(B | gas hydrate gas separation separation efficiency | SE-19 | 530 | |
M109 | $B?eCf$K>H | Acoustic cavitation Particle separation kHz-order ultrasonic | SE-19 | 672 | |
(13:00$B!A(B13:20) ($B;J2q(B $B>e9>='(B $B0lLi(B) | |||||
M113 | [$BM%=(O@J8>^(B] $BM6EE1KF0$K$h$k(BPt$BC4;}%+!<%\%s%J%NN3;R$N9b=cEY2=(B | Dielectrophoresis Particle Separation Carbon Nanoparticle | SE-19 | 51 | |
(13:20$B!A(B14:20) ($B:BD9(B $BB?Eg(B $B=(CK!&LZ2<(B $BIpI'(B) | |||||
M114 | $BN.DL<0M6EE1KF0AuCV$K$h$k1UCfHyN3;R$NJ,N%(B | particle separation dielectrophoresis silica particle | SE-19 | 653 | |
M115 | $BJ| | radiation-induced graft polymerization Polymer brush The sugar chain cluster effect | SE-19 | 928 | |
M116 | $B?e;@4p$rM-$9$k4xH/@-M-5!2=9gJ*$NFsNLBN2=H?1~(B | Radiation-induced graft polymerization Trimethylsilanol Dimerization | SE-19 | 905 | |
N $B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$BIt2q%;%C%7%g%s(B SE-10. <$B%(%l%/%H%m%K%/%9:`NA$H%W%m%;%9(B> | |||||
(10:00$B!A(B12:00) ($B:BD9(B $B=j(B $BOBI'!&6b;R(B $BK-(B) | |||||
N104 | $BDc@~KDD%F<$a$C$-(B | Copper Electrodeposition Thermal Expansion Coefficient | SE-10 | 17 | |
N105 | $B%^%$%/%m%3%s%?%/%H%W%j%s%HK!$K$h$k%Q%?!<%s$a$C$-MQ3K:^%$%s%/$N0u:~(B | printed electronics Electrodeposition micro-contact printing | SE-10 | 217 | |
N106 | $BEE2rF ($B8E2O%$%s%U%)%a!<%7%g%s%F%/%N%m%8!<(B) ($BIt(B)$B!{@P4](B $BBYG7!&(B | electrodeposition simulation electrolytic copper foil | SE-10 | 736 | |
N107 | TSV$B9bB.$a$C$-= | high speed TSV filling 3D packaging electrolyte optimization | SE-10 | 402 | |
N108 | $B%b%s%F%+%k%m%7%_%e%l!<%7%g%s$rMQ$$$?%7%j%3%s4SDLEE6K(B(TSV)$BKd$a9~$_$N%b%G%j%s%0(B | Monte Carlo Simulation Through-silicon via Additives | SE-10 | 340 | |
N109 | Cl-$B$H(BSPS$B$N6&B82<$K$*$1$kF<%@%^%7%s(B($BF<$a$C$-(B)$B%W%m%;%9$NH?1~B.EYO@$*$h$S0l2AF | TSV filling Cuprous Copper plating kinetic | SE-10 | 419 | |
(13:00$B!A(B14:20) ($B:BD9(B $B6aF#(B $BOBIW(B) | |||||
N113 | [$B>7BT9V1i(B] $BEE;R2sO)$N$?$a$N%S%"$H%9%k!<%[!<%kKd$a9~$_F<$a$C$-(B | Copper Via additive | SE-10 | 31 | |
N115 | [$B>7BT9V1i(B] CCS(Cognitive Computer System)$B;~Be$r@Z$j3+$i$/%G%P%$%95;=Q$NF08~(B | $B%G%P%$%9(B CCS $BH>F3BN(B | SE-10 | 107 | |
(14:40$B!A(B16:00) ($B:BD9(B $BIpLn(B $BBYI'!&@^ED(B $B?-><(B) | |||||
N118 | [$B>7BT9V1i(B] $B%"%k%P%C%/$N(BTSV$B%=%j%e!<%7%g%s(B | TSV Etcher Plasma | SE-10 | 23 | |
N120 | [$B>7BT9V1i(B] $BEE5$F<$a$C$-$K$h$k%S%"%U%#%j%s%0$HE:2C:^8z2L(B:$BF0E*%b%s%F%+%k%m%7%_%e%l!<%7%g%s$K$h$k%"%W%m!<%A(B | Monte Calro Copper electrodeposition Additive | SE-10 | 25 | |
O $B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$BIt2q%;%C%7%g%s(B SE-11. <$BG.J* | |||||
(9:00$B!A(B10:00) ($B:BD9(B $B:4Gl(B $BN4!&A0@n(B $B=!B'(B) | |||||
O101 | $BFs | two-dimensional flow velocity field energy transfer | SE-11 | 730 | |
O102 | $B%^%$%/%m5^=L>.5^3HBgN.O)Cf$N%3!<%J!<124Q;!$K$h$k%R%"%k%m%s;@MO1U$NCF@-IT0BDj$N2r@O(B | Elastic instability Hyaluronate solution | SE-11 | 657 | |
O103 | $B6J$,$j$rM-$9$k6k7A4I$K$*$1$k5^<}=L5^3HBg05NOB;<:$N?tCM2r@O(B | Sudden Expansion Sudden Contraction Pressure Loss | SE-11 | 302 | |
(10:00$B!A(B11:00) ($B:BD9(B $BNkLZ(B $BMN!&Bg@n86(B $B??0l(B) | |||||
O104 | $B3&LL3h@-:^?eMO1U$K$h$kDq93Dc8:N.$l$N2D;k2=$HN.$l9=B$$N%b%G%k2=(B | Drag Reduction Surfactant Flow Visualization | SE-11 | 839 | |
O105 | $B3&LL3h@-:^$K$h$kIwGH$N8:?j:nMQ(B | Wave damping surfactant fluid | SE-11 | 102 | |
O106 | $B6bLV$HB?9&HD$K$h$j7A@.$5$l$k1UN.$N(BPIV$B7WB,(B | PIV Hot film anemometer Flow visualization | SE-11 | 911 | |
(11:00$B!A(B12:00) ($B:BD9(B $B>.?9(B $B8g!&A0@n(B $B=!B'(B) | |||||
O107 | Front-Tracking$BK!$K$h$k%l%$%j! | Rayleigh-Taylor Instability Front-Tracking Method Numerical simulation | SE-11 | 396 | |
O108 | $B>F7k%,%i%9%S!<%:B?9&BN$X$N1UE)?;=a$N?tCM2r@O(B | packed bed penetration Lattice Boltzmann method | SE-11 | 138 | |
O109 | $BHy:YN.O)Fb$N5$1U<+M33&LL>e$KM65/$7$?%^%i%s%4%KBPN.$N2D;k2=$H$=$NB.EY7WB,(B | Marangoni effect PIV Capillary channel | SE-11 | 723 | |
(13:00$B!A(B13:40) ($B;J2q(B $B4dED(B $B=$0l(B) | |||||
O113 | [$B>7BT9V1i(B] $BD62;GH%I%C%W%i!<%l%*%a%H%j!<$N3+H/(B | Ultrasound Doppler Rheometry | SE-11 | 30 | |
(13:40$B!A(B14:20) ($B;J2q(B $BC+8}(B $B5.;V(B) | |||||
O115 | [$B>7BT9V1i(B] $B$;$sCGN.$*$h$SEE>l2<$K$*$1$kHsAjMO9bJ,;R%V%l%s%I$N(B3$B | Immiscible polymer blend Three-dimensional structure Rheology | SE-11 | 88 | |
(14:20$B!A(B15:00) ($B:BD9(B $BBg@n86(B $B??0l!&A0@n(B $B=!B'(B) | |||||
O117 | $BK'9aB2%"%_%I%*%$%k%2%k2=:^(B; PMDA$B$N%l%*%m%8! | Organogelator Rheology Stability | SE-11 | 856 | |
O118 | $BN.DL7O05NO?6F0C&K"K!$K$*$1$k05NO?6F00u2CIt$N8!F$(B | defoaming pressure-oscillation shear-thinning fluid | SE-11 | 463 | |
(15:00$B!A(B16:00) ($B:BD9(B $B>>7((B $BMN2p!&Bg@n86(B $B??0l(B) | |||||
O119 | $B%i%0%i%s%8%eE* | MPS phase transition heat transfer | SE-11 | 612 | |
O120 | $B29EY:9$HG;EY:9$K5/0x$9$k%^%i%s%4%KBPN.$N6&B88z2L$K$h$kBPN.9=B$0MB8@-$K4X$9$k?tCM2r@O(B | Marangoni convection Floating zone technique Si/Ge | SE-11 | 617 | |
O121 | Development of a new contact model for adhesive particles in the discrete particle simulation | adhesive contact model discrete element method | SE-11 | 118 | |
(16:00$B!A(B17:00) ($B:BD9(B $B?e8}(B $B>0!&A0@n(B $B=!B'(B) | |||||
O122 | $BDlLLCf1{$+$i$N%(%"%l!<%7%g%s$r$H$b$J$&6k7AMF4oFb$K$*$1$k5$1UFsAjN.$N?tCM2r@O(B | Gas-Liquid flow Two Phase Flow Numerical Simulation | SE-11 | 832 | |
O123 | $B05=L;E;v$rMW$7$J$$>J%(%M>xN1%7%9%F%`$NG.$*$h$S>xN1FC@-(B | HIDiC Energy conservation Ethanol distillation | SE-11 | 319 | |
O124 | $BMf@{7?%_%K%A%c%M%k$K$h$kAFN3$NJ,N%!&J,5i(B | Coarse particle separation/classification Spiral mini-channel CFD | SE-11 | 491 | |
P $B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$BIt2q%;%C%7%g%s(B SE-22. <$BG.9)3X%;%C%7%g%s(B> | |||||
(9:00$B!A(B10:20) ($B:BD9(B $B?@ED(B $B>45W!&?y2,(B $B7r0l(B) | |||||
P101 | $B%+!<%\%s%J%NN3;R$N>F7k5sF0$K4X$9$k | sintering soot SMPS | SE-22 | 55 | |
P102 | $BEE6KE:2C;@2=J*$,B?Aj8rN.%"!<%/$K$*$1$k1UE)Ht;68=>]$KM?$($k1F6A(B | Thermal Plasma Multi-Phase AC Arc Electrode Erosion | SE-22 | 276 | |
P103 | $B;@AGIY2=G3>F$K$*$1$k?eAG!&%a%?%sM=:.9gAXN.3H;62P1j$NG3>FFC@-(B | Oxygen-enriched combustion Hydrogen addition Diffusion flame | SE-22 | 409 | |
P104 | $B%P%$%*%,%9$N%^%$%/%mGHHsJ?9U%W%i%:%^;Y1gG3>F$K$h$kItJ,;@2=2~ | Plasma-assisted combustion Partial oxidation reforming Biogas | SE-22 | 557 | |
(10:40$B!A(B11:20) ($B:BD9(B $BEDCf(B $B3X(B) | |||||
P106 | $B%^%$%/%mGH>H | microwave nanoparticle superheat | SE-22 | 94 | |
P107 | $B%^%$%/%mGH2CG.?eG.K!$K$h$kF<%J%N%o%$%d$N?WB.9g@.(B | Microwave Hydrothermal synthesis Copper nanowire | SE-22 | 924 | |
(11:20$B!A(B12:00) ($B;J2q(B $BD+7'(B $BM52p(B) | |||||
P108 | [$BE8K>9V1i(B] $B2=3XH?1~$K$*$1$k%^%$%/%mGHFC@-$H8z2L(B | Microwave Chemical reaction Enzymatic reaction | SE-22 | 377 | |
(13:00$B!A(B13:40) ($B;J2q(B $BF|=P4V(B $B$k$j(B) | |||||
P113 | [$BE8K>9V1i(B] $B2CB.4o6nF0%7%9%F%`$NG.N.F08&5f(B | Lead-bismuth ADS Spallation target | SE-22 | 378 | |
(13:40$B!A(B14:40) ($B:BD9(B $B>.EDEg(B $BAo(B) | |||||
P115 | $B%;%i%_%C%/%3%"%7%'%k9=B$$rM-$9$k(BPCM$BC_G.BN$N3+H/(B | Ceramics PCM Heat storage body | SE-22 | 533 | |
P116 | $B@xG.J]M-J* | Latent heat Microcapsule Phase change material | SE-22 | 737 | |
P117 | $B%9%Q%$%i%k4I$rMQ$$$k5[<}<0%R!<%H%]%s%W$N5[<}1UKlG.!&J* | Absorption heat pumps Lithium bromide Mass transfer coefficient | SE-22 | 738 | |
(15:00$B!A(B16:00) ($B:BD9(B $B4]LS(B $B8, | |||||
P119 | $B>x5$@8@.5[Ce<0%R!<%H%]%s%WFbN3;R$NGKB;860x$N2rL@$*$h$SBQ5W@-8~>e$N8!F$(B | heat pump adsorbent durability | SE-22 | 466 | |
P120 | $B>x5$@8@.5[Ce<0%R!<%H%]%s%W$K$*$1$kJ.N.AX$K$h$k5[Ce:`:F@8(B | Spouted bed Zeolite Drying | SE-22 | 343 | |
P121 | $BI9E@2 | absorption refrigerator refrigerant freezing point | SE-22 | 569 | |
(16:00$B!A(B17:20) ($B:BD9(B $Bc7F#(B $BBYMN!&:4F#(B $B@5=((B) | |||||
P122 | Numerical investigation of the effect of the liquid film volume on thermocapillary flow in a thin circular liquid film ~ various Prandtl number fluids ~ | Marangoni convection Low Prandtl liquid film Volume ratio | SE-22 | 464 | |
P123 | $BDj29M"AwMF4oFbIt$N29EY%7%_%e%l!<%7%g%s(B | simulation | SE-22 | 357 | |
P124 | $B29EY:9(BMarangoni$BBPN.$r9MN8$7$?(BS-CLSVOF$BK!$N3+H/$H8!>Z(B | Marangoni convection VOF S-CLSVOF | SE-22 | 197 | |
P125 | $B%J%NN3;R!?9bJ,;R%3%s%]%8%C%HGvKl$N%/%i%C%/7A@.$K5Z$\$9MOG^>xH/>r7o$N1F6A(B | composite thin films crack solvent evaporation | SE-22 | 520 | |
Q $B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$BIt2q%;%C%7%g%s(B SE-16. <$B:`NA!&3&LLF$O@2q!V:`NAAO@=$H3&LL@)8f$N:GA0@~!W!J8}F,H/I=ItLg!K(B> $B$3$N%;%C%7%g%s$N9V1i;~4V$O(B $BH/I=#1#2J,!\F$O@#8J,(B $B$G$9!#(B | |||||
(9:00$B!A(B10:20) ($B:BD9(B $B?{(B $B7C;L!&;3Fb(B $B5*;R(B) | |||||
Q101 | $B0eNE2hA|?GCGMQ(BGd$B2=9gJ*C4;}(BAu/SiO2$BN3;R$N3+H/(B | Gd component Au nanoparticle | SE-16 | 46 | |
Q102 | DNA-mediated shape shift of nanoparticle superstructures for biomedical applications | Nanoparticle imaging Drug delivery system | SE-16 | 369 | |
Q103 | $BE`7k4%AgA`:n$rMxMQ$7$??eJ,;6(BMg-Al$B7OJ#?e;@2=J*%J%N%7!<%H$N:F9=C[(B | nanosheet layered double hydroxide freeze-drying | SE-16 | 65 | |
Q104 | $B8:054%Ag2<$G$N%3%m%$%@%k%U%!%$%P!<<+H/7A@.%a%+%K%:%`(B | colloidal fibers drying phase separation | SE-16 | 565 | |
(10:40$B!A(B11:20) ($B;J2q(B $BD9Hx(B $BBgJe(B) | |||||
Q106 | [$B>7BT9V1i(B] $B9bJ,2r8w3X82Hy6@$G8+$kI97k>=$NI=LLM;2r(B | Surface melting, ice optical microscopy | SE-16 | 13 | |
(11:20$B!A(B12:00) ($B;J2q(B $B | |||||
Q108 | [$B>7BT9V1i(B] $B9)3X$K;D$5$l$?Bg$-$JJ,Ln(B:$B$-$o$a$FD94|4V$K$o$?$k0BA43NJ]$,5a$a$i$l$kGQ4~J*$N8e;OKv!=9b%l%Y%kJ| | process at material interface clay minerals high-level waste | SE-16 | 16 | |
(13:00$B!A(B14:00) ($B:BD9(B $BB@ED(B $B@?0l(B) | |||||
Q113 | $BDc29>r7o2<$K$*$1$k%"%k%_%JGvKl:n@=K!$N3+H/(B | alumina film low-temperature | SE-16 | 47 | |
Q114 | ZnO$B%J%N%3%s%]%8%C%HF)L@Kl$X$NM6EE@-%J%NN3;RE:2C$K$h$k7V8wA}6/8z2L(B | nanocomposite fluorescence dielectric | SE-16 | 311 | |
Q115 | $B%b%j%V%G%s;@%+%k%7%&%`%J%NN3;R9g@.$HH/8wFC@-(B | Phosphor nanoparticle hydrothermal synthesis | SE-16 | 436 | |
(14:00$B!A(B15:00) ($B:BD9(B $B;0Ln(B $BBY;V(B) | |||||
Q116 | $BCf4V6K@-H?1~MOG^$NMxMQ$K$h$kI=LLAB?e2=2aDxCf$G$N%J%NN3;R$NJ,;60BDj@-(B | dispersion stability intermediate polarity surface hydrophobization | SE-16 | 390 | |
Q117 | $B%S!<%:%_%k$K$h$k9bJ,;6%]%j%^!<%3!<%F%#%s%0%7%j%+%U%#%i!<$ND4@=(B | Silica filler Polymer coating Disintegration | SE-16 | 795 | |
Q118 | $B7+$jJV$7J,;6!&J, | carbon nanotubes dispersion and printing quality-quantity tradeoff | SE-16 | 679 | |
(15:00$B!A(B16:00) ($B:BD9(B $BD90f(B $B7=<#(B) | |||||
Q119 | $BL}E)$NKl:Y9&F)2a$K4X$9$k?tCM%7%_%e%l!<%7%g%s(B | Lattice Boltzmann method Two-phase flow membrane permeation | SE-16 | 727 | |
Q120 | $B%^%$%/%m%U%k%$%G%#%/%9$HKl5;=Q$rM;9g$7$?%@%V%k%(%^%k%7%g%sD4@=K!$N3+H/(B | microfluidics membrane emulsion | SE-16 | 765 | |
Q121 | $B%7%j%3!<%sL}E)$H%]%j%^! | golf ball-like particle silicon oil droplets heterocoagulation | SE-16 | 467 | |
(16:00$B!A(B17:00) ($B:BD9(B $BLZKs(B $B8w@5(B) | |||||
Q122 | PMMA$BCr7?$K$h$k%U%'%N!<%k | carbon hard template physical activation | SE-16 | 39 | |
Q123 | $BCb2=C:AG8w?(G^$r4pHW$H$9$kB@M[8w2a;@2=?eAG9g@.(B | photocatalysis hydrogen peroxide sunlight | SE-16 | 229 | |
Q124 | $B<+A38wMxMQ7?0lJ}8~%U%m!<$K$h$kM-5!8w?(G^Kl$N@QAX%j%"%/%?!<(B | water purification photocatalyst flow system | SE-16 | 331 | |
R $B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$B;YIt!&K\It6&:E4k2h(B BP-1. <$B%*!<%W%s%=!<%9$K$h$k(BCFD$B$HN.BN2r@O$N:GA0@~(B> | |||||
(13:00$B!A(B14:20) ($B:BD9(B $B2,Ln(B $BBYB'(B) | |||||
R113 | [$B>7BT9V1i(B] OpenFOAM: $B8=>u$HE8K>(B | OpenFOAM Open CAE | BP-1 | 1027 | |
R115 | [$B>7BT9V1i(B] $B2=3X(B/$B:`NA6H3&$K$*$1$k(BOpenFOAM$B$N3$30;v>p(B | OpenFOAM CAE Europa | BP-1 | 1028 | |
R1P01 | OpenFOAM(R)$B$r | OpenFOAM Helyx GUI | BP-1 | 1029 | |
R1P02 | CFD$B%(%s%8%K%"$N$?$a$N;:3XO"7H$K$h$k(BCAE$B%f%K%P!<%7%F%#5;=Q650i(B | Engineer education university-industry CFDengineer | BP-1 | 1030 | |
R1P03 | OpenFOAM$B%U%!%s%G%#%s%0%W%m%8%'%/%H$H@_7W%W%m%;%9$X$NE83+(B | OpenFOAM CAE design process | BP-1 | 1031 | |
R1P04 | ennovaCFD | BP-1 | 1032 | ||
R1P05 | $BEE2r2C9)$N%^%k%A%U%#%8%C%/%92r@O$K$D$$$F(B | COMSOL | BP-1 | 1033 | |
R1P06 | $BHFMQ(BCFD$B%=%k%P$N$?$a$N9b@:EY$J%a%C%7%e@8@.%D!<%k(BPointwise$B$HJBNs=hM}$G?t2/%a%C%7%e$N7W;;7k2L$r7Z2w$K2D;k2=$G$-$k(BFieldView$B$N$4>R2p(B | Pointwise FieldView | BP-1 | 1034 | |
R1P07 | Cantera $B$H(B CRUNCH CFD$B$rMQ$$$?G3>F2r@O;vNc(B | cantera CRUNCH CFD | BP-1 | 1035 | |
R1P08 | $BJ?@.(B28$BG/EY!V5~!W$r4^$`(BHPCI$B%7%9%F%`MxMQ8&5f2]Bj$NJg=80FFb$HBh(B3$B2s(BOpenFOAM$B%o!<%/%7%g%C%W$N$4>R2p(B | BP-1 | 1036 | ||
R1P09 | $B$b$N$E$/$j$N9bEY2=$r;Y1g$9$k%*!<%W%s(BCAE$B%7%9%F%`(B(DEXCS)$B$N>R2p(B | CAE DEXCS | BP-1 | 1037 | |
R1P10 | $B%*!<%W%s(BCAE$B$,C[$/%3%_%e%K%F%#(B | OpenCAE | BP-1 | 1038 | |
R1P11 | $BN3;RK!(BCFD$B$*$h$S3J;RK!(BCFD$B$NHf3S(B | CFD Particle method (MPS) Grid method | BP-1 | 1039 | |
S $B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$BIt2q%;%C%7%g%s(B SE-13. <$B3W?7E*J4N3BN%W%m%;%95;=Q$N?JE8!]4pAC8=>](B, $B4pAC5;=Q$+$iC10LA`:n(B, $B1~MQ;vNc$^$G!](B> | |||||
(13:00$B!A(B14:40) ($B:BD9(B $BLnED(B $BNh<#!&5HED(B $B1Q?M(B) | |||||
S113 | $B%P%0%U%#%k%?!<$N05NOB;<:$HJ4?PF)2aN($r?d;;$9$kL5 | bag filter pressure drop particle penetration | SE-13 | 321 | |
S114 | $B%P%0%U%#%k%?!<$N%9%1!<%k%"%C%W$K$*$1$k:GE,@_7W>r7o$K4X$9$k9M;!(B | bag filter scale-up optimum design condition | SE-13 | 323 | |
S115 | $BBN@Q8:>/$rH<$&H?1~$rN.F0?(G^AX$G9T$&>l9g$NN.F0@-@)8f(B | fluidized bed defluidization feedforward control | SE-13 | 99 | |
S116 | $B8G5$N.F0AX$K$*$1$k5$K"N.F02=$X$N>uBVA+0\$K5Z$\$95!3#E*?6F0IU2C$N1F6A(B | $BN.F0AX(B $B?6F0(B $B5$K"(B | SE-13 | 923 | |
S117 | [$BM%=(O@J8>^(B] $BN.F02=%,%9@Z$j49$($K$h$C$F0z$-5/$3$5$l$kHsN.F02=8=>]$N%a%+%K%:%`(B | fluidized bed defluidization non-equimolar diffusion | SE-13 | 7 | |
(15:00$B!A(B17:00) ($B:BD9(B $B9CHe(B $B7IH~!&GOEO(B $B2B=((B) | |||||
S119 | [$BM%=(O@J8>^(B] $B@EEEJ.L8$K$h$k1UE)J,Nv$H%$%*%sJ|=P2aDx$K5Z$\$9MO1UG;EY$N1F6A(B | Electrospray Ion Generation Nano Particle | SE-13 | 64 | |
S120 | $BJ.L8G.J,2rK!$K$h$kNU;@%3%P%k%H%j%A%&%`$N9g@.$H$=$N7ABV@)8f(B | LiCoPO4 Cathode Lithium battery | SE-13 | 817 | |
S121 | $B2~NI7?$N1UBN%5%$%/%m%s$K$h$kN3;RJ,N%FC@-(B | Hydro-cyclone Separation performance Particle size | SE-13 | 435 | |
S122 | $BLZF3%$N@.J,J,N%$K4X$9$k8&5f(B | Woody biomass incineration ash Size classification Component separation | SE-13 | 125 | |
S123 | $B?eG.=hM}$K$h$k@PC:3%$H%P%$%*%^%9G3>F3%$N%<%*%i%$%H$X$N:F;q8;2=(B | Coal fly ash Biomass incineration ash Zeolite | SE-13 | 123 | |
S124 | $BI=LL2~ | Scallop shell Plywood adhesive Grinding | SE-13 | 794 | |
T $B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$BIt2q%;%C%7%g%s(B SE-4. <$B | |||||
(13:20$B!A(B13:40) ($B;J2q(B $BEDCf(B $B9'L@!&?e8}(B $BOB?.(B) | |||||
T114 | $B%P%$%*0eLtIJ$N9bEY%@%&%s%9%H%j!<%`%W%m%;%9$K$*$1$k%7%s%0%k%f!<%9%7%9%F%`(B | single-use system protein chromatography | SE-4 | 946 | |
(13:40$B!A(B14:20) ($B;J2q(B $B;3K\(B $B=$0l!&?e8}(B $BOB?.(B) | |||||
T115 | [$B>7BT9V1i(B] $B7l^yJ,2h@=:^@=B$J}K!$H%7%s%0%k%f!<%9%7%9%F%`(B | single use system protein separation | SE-4 | 939 | |
(14:20$B!A(B15:00) ($B:BD9(B $BEDCf(B $B9'L@!&EDCf(B $B5|(B) | |||||
T117 | $B%P%$%*%W%m%;%9MQ%7%s%0%k%f!<%9%P%C%0$N3IYB%G%P%$%9$N3+H/(B | single-use system mixing plastic containers | SE-4 | 943 | |
T118 | $B?75,93BN@:@=MQ%/%m%^%H%0%i%U%#!<= | packing media Mab chromatography | SE-4 | 954 | |
(15:00$B!A(B15:40) ($B:BD9(B $B;3K\(B $B=$0l!&LpED(B $BM'0l(B) | |||||
T119 | $B93BN@:@=MQ%"%U%#%K%F%#C4BN$N9b@-G=2=(B | affinity antibody purification | SE-4 | 353 | |
T120 | $B93BN0eLtIJ@:@=%W%m%;%9MQ%/%m%^%HJ,N%:^$NI>2A(B | chromatography separation media antibody | SE-4 | 744 | |
(15:40$B!A(B16:40) ($B:BD9(B $B;3K\(B $B=$0l!&?e8}(B $BOB?.(B) | |||||
T121 | [$B0MMj9V1i(B] $B%P%$%*J,N%MQ%7%s%0%k%f!<%9%G%W%9%U%#%k%?!<(B | depth filter single-use system bioseparations | SE-4 | 961 | |
T122 | $B%"%U%#%K%F%#%/%m%^%H%0%i%U%#!<$K$*$1$k93BNM3Mh6E=8J*$NMO=P5sF0(B | protein A Mab chromatography | SE-4 | 952 | |
T123 | $B%U%m!<%9%k!<%/%m%^%H%0%i%U%#!<$K$h$k%]%j%C%7%s%0%W%m%;%9(B | single-use system protein chromatography | SE-4 | 948 | |
U $B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$BIt2q%;%C%7%g%s(B SE-12. <$B5$K"!&1UE)!&HyN3;RJ,;69)3X(B2015> | |||||
(9:20$B!A(B12:00) ($B:BD9(B $BK\4V(B $B=S;J!&5HK\(B $B@?(B) | |||||
U102 | $B%]%9%H%7%0%J%k=hM}$rMQ$$$?C10l8w%U%!%$%P!<%W%m!<%V$K$h$k9b@:EY1UE)7WB,(B | Single tip optical fiber probe droplet measurement signal processing | SE-12 | 785 | |
U103 | Na-$B%3%s%/%j!<%HH?1~@8@.J*$NHy;kE*>uBV$K4X$9$k8&5f(B | Sodium-concrete reaction microscopic state phase field | SE-12 | 526 | |
U104 | $B%A%c%M%kMpN.Fb1?F0NL%P%i%s%9$K$*$1$kN3;R!&%^%$%/%m%P%V%kE:2C$N1F6A(B | Gas-particle flow Microbubbles Turbulent flow | SE-12 | 159 | |
$B5Y7F(B | |||||
U106 | $B%j%s;i.1UE)Fb$K3VN%$5$l$?9ZAG0lJ,;R$NFC@-$H1~MQ(B | liposomes enzyme fine droplet | SE-12 | 426 | |
U107 | $B%]%j%"%K%j%s=E9gH?1~@)8f$N$?$a$N%Y%7%/%k$NKl3&LLMI$i$.$NI>2A(B | Fluctuation Polymerization Vesicle | SE-12 | 919 | |
U108 | $B%9%W%l!<%N%:%k$rMQ$$$?(BAPA$BMO1UJ.L8K!$K$h$k4xH/@-M-5!2=9gJ*$N=|5n@-G=$N8~>e(B | Acrylamide polyampholyte (APA) Spray nozzle VOC | SE-12 | 818 | |
U109 | $BM-5!=$>~(BCeO2$B%J%NN3;R$K$*$1$k=$>~J,;RL)EY$NJ,;6@-!&G4@-$X$N1F6A(B | surface modified nanoparticles dispersibility viscosity | SE-12 | 892 | |
(13:00$B!A(B14:00) ($B:BD9(B $B5HK\(B $B@?(B) | |||||
U113 | [$BE8K>9V1i(B] $B%^%$%/%mN.O)AXN.7O$rMxMQ$9$kHyN3;R$N@:L)<><0J,5i%W%m%;%9(B | Microfluidic devices Particle separation Laminar flow | SE-12 | 238 | |
U115 | $B%_%K%A%c%M%kFb1U1U%9%i%0N.$rMQ$$$?%7%j%+HyN3;R9g@.$HN37BJ,I[$N@)8f(B | mini-channel liquid-liquid slug flow silica particle | SE-12 | 124 | |
(14:00$B!A(B17:00) ($B:BD9(B $BF#2,(B $B:;ET;R!&:dEl(B $BK'9T(B) | |||||
U116 | $B%&%k%H%i%U%!%$%s%P%V%k?e$K$h$k2sE>1_HDIUCe%G%s%W%s$N@v>t(B | Ultrafine Bubble Cleaning ISO | SE-12 | 127 | |
U117 | $B%U%!%$%s%P%V%k$rMxMQ$7$?%O%$%I%l!<%H$N7A@.$H1~MQ(B | fine bubble hydrate promoter | SE-12 | 404 | |
$B5Y7F(B | |||||
U119 | $B%^%$%/%mGH>H | microwave bubble formation DLS | SE-12 | 93 | |
U120 | $B6/QrCG$r | flow loop bubble size distribution breakup | SE-12 | 173 | |
U121 | $B%"%k%+%jMO2r2q9g@-9bJ,;RMO1UCf$r>e>:$9$k5$K"$KH/8=$9$k%^%$%/%m%9%1!<%k9=B$(B | bubble rise motion microscale structure viscoelastic fluid | SE-12 | 912 | |
U122 | $BMOM;>K;@%J%H%j%&%`Cf$NC10l%N%:%k$+$i$N5$K"@8@.(B | bubble formation molten salt high temperature | SE-12 | 152 | |
U123 | $B%^%$%/%m%P%V%kJ,;6$K$h$k;@AG(B-$BCbAG:.9g5$BN$N5[<}FC@-(B | Micro-bubble Absorption characteristics Bubble column | SE-12 | 457 | |
U124 | $B%^%$%/%m%P%V%k5$K"Ec$K$*$1$k1UAjJ* | Micro bubble Volumetric mass transfer coefficient Axial distribution | SE-12 | 150 | |
V $B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$BIt2q%7%s%]%8%&%`(B SY-8. <$B;q8;!&%(%M%k%.! | |||||
(9:00$B!A(B10:20) ($B:BD9(B $B0BED(B $B7<;J(B) | |||||
V101 | $BGQ@P9Q$+$i$N%R%I%m%-%7%"%Q%?%$%H$N9g@.B.EY(B | Hydroxyapatite Gypsum waste Synthesis rate | SY-8 | 225 | |
V102 | $B%[%k%b!<%9H?1~$K4X$9$kH?1~5!9=$K$*$1$kCf4VBN$NF0BVJ,@O(B | Formose reaction Sugar synthesis Rearrangement | SY-8 | 536 | |
V103 | $BG.J,@O$K$h$k2=3XJ*2A$K4X$9$k0l9M;!!!(B-$B;@E:2C%K%H%m%;%k%m!<%9$rNc$K(B- | Nitrocellulose Energetic materials Hazard evaluation | SY-8 | 556 | |
V104 | $B4629@-%3%]%j%^!<$ND62;GH9g@.$*$h$S$=$NH?1~B.EY2r@O(B | ultrasonic polymer synthesis reaction kinetics temperature-responsive copolymer | SY-8 | 652 | |
(10:40$B!A(B12:00) ($B:BD9(B $B30NX(B $B7r0lO:(B) | |||||
V106 | $B%Y%s%A%e%j!<$rMxMQ$7$?N.F0%-%c%S%F!<%7%g%s$K$h$k2=3XH?1~@-$N8!F$(B | hydrodynamic cavitation venturi tube chemical effect | SY-8 | 593 | |
V107 | $BD62;GH2=3XH?1~$K5Z$\$91zLLH? | ultrasonic chemical reaction concave reflecting plate operating condition | SY-8 | 347 | |
V108 | [$B>7BT9V1i(B] $B%W%i%:%b%K%C%/B@M[EECS$K$*$1$k%J%N5wN%@)8f$H(B | Solar cell Surface Plasmon Nanometer | SY-8 | 570 | |
(15:20$B!A(B15:40) ($B;J2q(B $BEOIt(B $B0=(B) | |||||
V120 | [$BM%=(O@J8>^(B] Ni$BCV49(BMgAl2O4$B%9%T%M%kJ#9g;@2=J*$rMQ$$$??75,C:2=?eAG2~ | Magnesium aluminate spinel Nickel catalyst Hydrocarbon reforming | SY-8 | 34 | |
(15:40$B!A(B16:20) ($B;J2q(B $BFs0f(B $B?8(B) | |||||
V121 | [$B>7BT9V1i(B] $BL$MxMQ;q8;3hMQ$r$a$6$7$?%W%m%;%93+H/(B($B=E | heavy oil biomass process development | SY-8 | 581 | |
(16:20$B!A(B17:00) ($B;J2q(B $BCf:d(B $BM$B@(B) | |||||
V123 | [$B>7BT9V1i(B] $B%a%?%/%j%k;@%a%A%k(B(MMA)$B@=B$%W%m%;%9$N?7E83+(B-$B?7%(%A%l%sK!(B (Alpha$BK!(B)$B$N3+H/(B | Methyl methacrylate(MMA) Alpha process Ethylene | SY-8 | 572 | |
ZA $B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$BIt2q%;%C%7%g%s(B SE-15. <$BH?1~9)3XIt2q(B $B%]%9%?!<%;%C%7%g%s(B> | |||||
(11:00$B!A(B12:00) ($B:BD9(B $B6a9>(B $BLwB'!&:4F#(B $B9d;K(B) | |||||
ZA1P01 | $B5<;w0\F0AX7?%/%m%^%HH?1~4o$rMQ$$$?%0%j%;%j%sF};@%(%9%F%k$NO"B39g@.(B | Chromatographic reactor Simultaneous reaction and separation Glycerol | SE-15 | 218 | |
ZA1P02 | $B;@E:2C%K%H%m%;%k%m!<%9$NH/G.5sF0$K5Z$\$9;nNAMF4oMFNL$N1F6A(B | Nitrocellulose Spontaneous ignition Differential Scanning Calorimetry (DSC) | SE-15 | 609 | |
ZA1P03 | $B%Y%s%<%s%8%*!<%k0[@-BN$NG.J,2r5!9=(B:$B | resorcinol CO2 generation quantum chemical calculation | SE-15 | 69 | |
ZA1P04 | $B%7%"%N%9%A%k%Y%sM6F3BN$N6E=8M65/H/8w$K4X$9$kM}O@E*8&5f(B | Quantum Chemistry Aggregation Induced Emission | SE-15 | 470 | |
ZA1P05 | $BC:AG7O8GBN;@$NE|2=@-G=$K4X$9$k8&5f(B | carbon-based solid acid catalyst saccharification biomass | SE-15 | 481 | |
ZA1P06 | $BI=LLFC@-$H:Y9&9=B$$r@)8f$7$?%^%$%/%m%O%K%+%`>uC:AG7O8GBN;@?(G^$N1UAjH?1~$X$NMxMQ(B | solid acid catalyst porous medium esterification | SE-15 | 103 | |
ZA1P07 | $BC:AG7O:`NA$rMQ$$$?<+F0 | Three-Way Catalyst carbon alloys off$B!>(Bgas cleanup | SE-15 | 496 | |
ZA1P08 | $B6bB0C4;}&B7?%<%*%i%$%H?(G^$rMQ$$$?%P%$%*%*%$%k$N%"%C%W%0%l!<%I(B | Bio-oil $B&B(B-zeolite upgrading | SE-15 | 82 | |
ZA1P09 | ZSM-5$B$rMQ$$$?N.F0AXH?1~4o$K$h$k%P%,%9M3Mh$N?];@$+$iK'9aB2C:2=?eAG$X$NE>2=H?1~(B | ZSM-5 acetic acid Fluidized bed reactor | SE-15 | 471 | |
ZA1P10 | $B=a3jL}Cf$N;@2=KI;_:^$NO"B34T85:F@8$X$N%Q%i%8%&%`?(G^Kl$NMxMQ(B | palladium membrane antioxidant kinetic analysis | SE-15 | 366 | |
ZA1P11 | $B%Q%i%8%&%`?(G^Kl$rMQ$$$?%Y%s%<%sD>@\?e;@2=$NB.EYO@E*8!F$(B | reaction kinetic direct hydroxylation Pd catalytic membrane reactor | SE-15 | 430 | |
ZA1P12 | $B>K;@%0%"%K%8%s!?1v4p@->K;@F<:.9gJ*$NG3>F@-$*$h$SGS=P%,%9$N>t2=$K4X$9$k8&5f(B | Gas generator Airbag exhaust gas purification | SE-15 | 616 | |
ZA1P13 | 1,3-$B%V%?%8%(%s9g@.MQ%S%9%^%9(B-$B%b%j%V%G%sJ#9g;@2=J*?(G^$X$N%;%j%&%`$NE:2C8z2L(B | 1,3-butadiene Bi-Mo-oxide catalysts De-doping | SE-15 | 167 | |
ZA1P14 | $BNW3&E@0J2<(B150$B!n$^$G;HMQ2DG=$J%Q%i%8%&%`J#9gKl$N:n@=$H@-G=I>2A(B | Hydrogen Palladium Membrane | SE-15 | 885 | |
ZA1P15 | $B?eJ,2r$K$h$k?eAG@=B$$N$?$a$NF<;@2=J*D4@=K!(B | hydrogen production copper oxide water decomposition | SE-15 | 459 | |
ZA1P16 | $B9bA*BrE*J* | catalyst zeolite core-shell | SE-15 | 492 | |
ZA1P17 | $BAX>u%1%$;@1v$N9g@.$H5!G=2=(B | layered silicate zeolite catalysis | SE-15 | 722 | |
ZA1P18 | $B%<%*%i%$%H(B/$B;@2=%+%k%7%&%`$rMQ$$$?%X%-%5%U%k%*%m%(%?%s$NJ,2r(B | Hexafluoroethane Zeolite Calcium Oxide | SE-15 | 826 | |
ZA1P19 | $BBeBX%U%m%s$+$i$N%U%C;@@=B$%W%m%;%9$N3+H/(B | Distillation Hydrofluoric acid Sulfuric acid | SE-15 | 842 | |
ZA1P20 | $B<<299g@.(BMg$B$*$h$S(BAl$B4^M-(BMCM-41$B$N?(G^:nMQ(B | mesoporous silica base catalyst acid catalyst | SE-15 | 290 | |
ZA1P21 | An Improved Method for the Synthesis of TiO2-SiO2 Microhoneycomb Photocatalysts | ice-templating method microhoneycomb photocatalyst | SE-15 | 264 | |
ZA1P22 | $BHsG.J?9U%W%i%:%^H?1~4o$rMQ$$$?(BTCE$BJ,2r$KBP$9$k9=@.EE6K>r7o$HEE8;<~GH?t>r7o$N1F6A(B | Nonthermal plasma Surface discharge Trichloroethylene decomposition | SE-15 | 804 | |
ZA1P23 | $BG.2=3X%5%$%/%k$rMxMQ$7$?!"B@M[8w!&?e!&6u5$$+$i$N%"%s%b%K%"@=B$$K4X$9$k8&5f(B | Ammonia Production Thermochemical Cycle Iron catalyst | SE-15 | 632 | |
ZA1P24 | $B2D5UH?1~$rMQ$$$?Dc29G.8;MxMQ%7%9%F%`$N8!F$(B | Chemical heat pipe low-temperature heat source utilization reversible reaction | SE-15 | 126 | |
ZA1P25 | $B%=!<%W%U%j! | polystyrene fine particle soap-free emulsion polymerization | SE-15 | 759 | |
ZA1P26 | $B6&C:2=K!$K$h$kC:2=J*$N:Y9&9=B$@)8f(B | resin carbide molecular sieve | SE-15 | 904 | |
ZB $B2q>l(B | |||||
$B9V1i(B $B;~9o(B | $B9V1i(B $BHV9f(B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $BJ,N`(B | $BHV9f(B $B | |
$BIt2q%;%C%7%g%s(B SE-1. <$B%P%$%*It2q%]%9%?!<%;%C%7%g%s(B> | |||||
(9:00$B!A(B10:20) ($B:BD9(B $B>.@>(B $B@5O/(B) | |||||
ZB1P01 | $B%"%_%m%$%IAK32:^C5:w$K8~$1$?%P%$%*%^%9%i%$%V%i%j!<9=C[(B | Amyloid Inhibitor Library | SE-1 | 929 | |
ZB1P02 | Deletion of periplasmic protease DegQ enhances the outer membrane vesicle production of Shewanella oneidensis cells | Outer membrane vesicle Shewanella oneidensis DegQ | SE-1 | 517 | |
ZB1P03 | $BBgD26]%a%s%V%i%s%Y%7%/%k$N;:@8FC@-$H%R%HD24I:YK&$X$N | Escherichia coli outer membrane vesicle human intestine cells | SE-1 | 199 | |
ZB1P04 | $B936]:^K=O*$K$h$jM60z$5$l$kBgD26]%P%$%*%U%#%k%`7A@.B%?J$H%a%s%V%i%s%Y%7%/%k;:@8$H$N4XO"@-(B | biofilm antibiotics outer membrane vesicle | SE-1 | 483 | |
ZB1P05 | $BGr?'Ie5`6]$K$h$k%^%s%,%s%Z%k%*%-%7%@!<%<@8;:$K5Z$\$9(BpH$B%7%U%H$N1F6A(B | manganese peroxidase pH white rot fungus | SE-1 | 428 | |
ZB1P06 | $BGr?'Ie5`6]$N;}$D%;%k%i!<%<$NC1N%(B | White rot fungus cellulase Biomass | SE-1 | 354 | |
ZB1P07 | $B%?%s%Q%/ | cellulase self-assembly biorefinery | SE-1 | 346 | |
ZB1P08 | $B2YEE;i | charged liposomes cellulase ionic liquid | SE-1 | 422 | |
ZB1P09 | $B%$%*%s1UBNBQ@-%;%k%i!<%<;:@8Hy@8J*$NC5:w(B | ionic liquid cellulase carboxymethylcellulose | SE-1 | 926 | |
ZB1P10 | Serratia$BB0:Y6]$K$h$k(BBDF$BGQ1U$+$i$N%3%O%/;@@8;:@-$KBP$9$kDL5$@Z$jBX$(>r7o$N8!F$(B | BDF wastes succinic acid aeration switching culture | SE-1 | 685 | |
ZB1P11 | $BFsAjG]M\7O$K$*$1$k(B3-$B%a%A%k%+%F%3!<%k@8;:$ND94|0];}$N$?$a$NM-5!Aj8r49(B | two-phase partitioning bioreactor immobilized cell bioproduction of hydrophobic substance | SE-1 | 681 | |
ZB1P12 | $B%(%?%N!<%k@8;:BgD26]$X$N%U%m%C%/7A@.G=$NIUM?(B | Escherichia coli Ethanol Floc formation | SE-1 | 539 | |
ZB1P13 | $B%7%H%/%m%`(BP450$BH/8=BgD26]$rMQ$$$?(Bwhole cell bioconversion$B$K5Z$\$9G]M\!&H?1~>r7o$N1F6A(B | cytochrome P450 Escherichia coli whole cell biocatalyst | SE-1 | 295 | |
ZB1P14 | LED$B8w8;$rMQ$$$?0dEA;RAH49$((BSynechococcus elongatus$B$K$h$k%P%$%*%"%k%3!<%k@8;:(B | Synechococcus elongatus 1.3-propanediol isopropanol | SE-1 | 397 | |
ZB1P15 | $BAH49$(BgD26]$rMQ$$$?3h@-7?0lK\:?93BN$N9b8zN(J,Hg@8;:(B | E.coli Fed-batch scFv | SE-1 | 405 | |
ZB1P16 | $BBgD26]$rMQ$$$?%3%j%9%_;@M6F3BN9g@.%W%i%C%H%[!<%`$N3+H/(B | Escherichia coli Chorismates Aromatic building-block | SE-1 | 752 | |
ZB1P17 | CRISPR Cas9 system $B$rMQ$$$FBe | CRISPR Cas9 System Schizosaccharomyces pombe Organic acid | SE-1 | 506 | |
ZB1P18 | $BAH49$(5;=Q$K$h$k0lK\:?%^%s%N%7%k%(%j%9%j%H!<%k%j%T%C%I$NA*BrE*@8;:J}K!$N8!F$(B | biosurfactant yeast acyltransferase | SE-1 | 349 | |
ZB1P19 | $B@8J*3XE*GS?e=hM}%W%m%;%9$K$*$1$kHy@8J*AQ2r@O(B | 16S rRNA gene microbiome ethidium monoazide | SE-1 | 601 | |
ZB1P20 | $B%+%P%N%"%J%?%1$N1UBNI=LLG]M\$K$h$k@8M}3h@-J*2A(B | Inonotus obliquus Antioxidant C. elegans | SE-1 | 644 | |
ZB1P21 | $BGQ4~0{NA$H>FCqGt$r86NA$H$7$?F};@H/9Z(B | Lactic acid fermentation shochu lees waste beverage | SE-1 | 682 | |
ZB1P22 | Lactobacillus$BB0$N(B2$B | lactic acid fermentation Lactobacillus rhamnosus Lactobacillus pentosus | SE-1 | 689 | |
ZB1P23 | 2$B | lactic acid fermentation inhibition by iron compound lactobacillus | SE-1 | 692 | |
ZB1P24 | $BAtN`%P%$%*%^%9$NMxMQ$K8~$1$?Hy:YAtN`$NG;=LK!$N8!F$(B | Microalgae Coagulation Filtration | SE-1 | 732 | |
ZB1P25 | Streptomyces aureofaciens$BM3Mh$NHs6bB07?%O%m%Z%k%*%-%7%@!<%<$NBQ5W@-8~>e(B | directed evolution haloperoxidase stability | SE-1 | 793 | |
ZB1P26 | Thermobifida fusca$BM3Mh%7%H%/%m%`(BP450$B$NEE;REAC#%Q!<%H%J!<$NC5:w(B | cytochrome P450 electron transfer partner protein engineering | SE-1 | 655 | |
ZB1P27 | $B9g@.@8J*3XE*%"%W%m!<%A$rL\;X$7$?9ZJl%W%m%F%$%s%?%0$N3+H/(B | yeast tag synthetic biology | SE-1 | 153 | |
ZB1P28 | $B9ZAG%9%F!<%W%i!<$rMQ$$$?BgD26]BNFb$G$NBe | Escherichia coli sortase A enzyme | SE-1 | 486 | |
ZB1P29 | Zipbody: $BBgD26]$GH/8=MF0W$J?75,(BFab$B93BNM6F3BN(B | antibody leucine zipper Escherichia coli | SE-1 | 374 | |
ZB1P30 | Increasing signal-to-noise ratio of an scFv-c-kit biosensor by insertion of a flexible linker | biosensor flexible linker antibody selection | SE-1 | 754 | |
ZB1P31 | $B%7%0%J%kJ,;R$NKl6I:_$rMxMQ$7$?(Bp53$BM^@)%?%s%Q%/ | Protein-peptide interaction Signaling molecule Localization | SE-1 | 865 | |
ZB1P32 | Beta-$B%+%<%$%sM3Mh%Z%W%A%I$NLtJ*J,;6:^$H$7$F$N5!G=I>2A(B | peptide casein poorly water soluble drug | SE-1 | 701 | |
ZB1P33 | $B%3%(%s%6%$%`(BQ10$B$NJ,;6:^$H$J$k%+%<%$%sM3Mh%Z%W%A%I$NJ,2h$HI>2A(B | coenzyme Q10 dispersibility hydrophobic peptides | SE-1 | 702 | |
ZB1P34 | $BN>?FG^@-%-%a%i%Z%W%A%I$H$NJ#9g2=$K$h$k%Q%/%j%?%-%;%k$N?eJ,;6@-2~A1(B | dispersibility paclitaxel amphiphilic | SE-1 | 791 | |
ZB1P35 | $B7\FyM3Mh93;@2=@-%Z%W%A%I$NFC@-(B | anti-oxidant chicken meat peptide | SE-1 | 224 | |
ZB1P36 | T7$B%U%!!<%8%i%$%V%i%j!<$rMQ$$$?(BPd$B?FOB@-%Z%W%A%I$NC5:w$*$h$S8GDj2=FC@-2r@O(B | T7phage library protein immobilization affinity tag | SE-1 | 595 | |
ZB1P37 | $BEE0L$r0u2C$7$?3F | protein adsorption ellipsometry surface potential | SE-1 | 458 | |
ZB1P38 | $B%R%I%m%-%7%"%Q%?%$%H%^%$%/%m%+%W%;%k$N%Z%W%A%I!&%?%s%Q%/ | hydroxyapatite microcapsule controlled release | SE-1 | 207 | |
ZB1P39 | $BBQ7l@6%V%m%C%-%s%0;nLt$N3+H/$rL\;X$7$?(BMPC$B%]%j%^!<$N5[CeFC@-2r@O(B | MPC polymer Blocking Adsorption | SE-1 | 585 | |
ZB1P40 | $B%$%`(B $B%N%/%m%^%H$*$h$S3K;@%/%m%^%H$KE,$7$?%a%s%V%l%sAG:`$N3+H/$H@8BNJ,;R$N8GDj2=(B | Membrane Non-specific adsorption Immuno-Chromatography | SE-1 | 578 | |
(10:40$B!A(B11:40) ($B:BD9(B $B;T@n(B $BAO:n(B) | |||||
ZB1P41 | $B9ZAG8GDj2=B->l$H$7$F$N%9%H%l%W%H%"%S%8%s%O%$%I%m%2%k$N:n@=(B | Streptavidin Enzyme immobilization Sortase A | SE-1 | 523 | |
ZB1P42 | $B<+8JAH?%2=Kl$N4T85C&N%$K$h$k9ZAG8GDj2=MQ@EEEKB;eIT?%I[$N%j%5%$%/%k(B | Electrospinning Enzyme immobilization Electrochemical desorption | SE-1 | 59 | |
ZB1P43 | $B29EY1~Ez7?93BN@:@=:`NA$N3+H/(B | Antibody Purification Thermo-Responsive Material Chromatography | SE-1 | 121 | |
ZB1P44 | $BAjJ,N%K!$rMQ$$$?%-%A%s%7!<%H!&%-%A%s%A%e!<%V$N:n@=(B | chitin sheet chitin tube phase separation | SE-1 | 205 | |
ZB1P45 | $B7l1U_I2a4o$K$*$1$kCf6u;eFbI=LL$N4Q;!(B | hemofilter filtration rate inner surface | SE-1 | 487 | |
ZB1P46 | $B%^%k%A%3%s%Q!<%H%a%s%H7?%8%c%$%"%s%H%Y%7%/%k$rH?1~>l$H$7$?9ZAGH?1~7O$N9=C[(B | Giant vesicles Multicompartment structure Enzyme reaction | SE-1 | 728 | |
ZB1P47 | $B3K;@J,;R$N9b~%Y%7%/%k$NKl>l%G%6%$%s(B | Membranome Guanidinium-Modified Vesicles Nucleic Acid Recognition | SE-1 | 884 | |
ZB1P48 | $BBe | Membranome Caldilipin-Modified Liposome Isocitrate Dehydrogenase | SE-1 | 886 | |
ZB1P49 | $BEE2r1UGvAX2=$K$h$kEE5$2=3X%^%$%/%m%]%s%W$NEG=P1~EzB.EY$N8~>e$H?@7P%7%0%J%k@)8f$X$N1~MQ(B | neural chip imaging polydimethylsiloxane | SE-1 | 887 | |
ZB1P50 | $B5!G=@-:`NA$H$7$F$N%9%H%l%W%H%"%S%8%s7k>=$NMxMQ(B | charged peptide tag protein crystal streptavidin | SE-1 | 501 | |
ZB1P51 | $B%&%$%k%9%+%W%7%I$rMxMQ$7$?(BP450$B?(G^3h@-$rM-$9$k%J%N%j%"%/%?!<(B | Cytochrome P450 Nanoreactor Viral capsid | SE-1 | 942 | |
ZB1P52 | $BL}>u%J%NJ,;62=5;=Q$rMxMQ$7$?%R%"%k%m%s;@$N7PHi5[<}B%?J(B | hyaluronic acid Transdermal drug delivery cosmetic | SE-1 | 462 | |
ZB1P53 | Solid-in-Oil$B2=5;=Q$HLH1VIj3h%"%8%e%P%s%H$NJ;MQ$K$h$kLH1VM6F3G=$N8~>e(B | transcutaneous vaccine nanodispersion vaccine adjuvant | SE-1 | 474 | |
ZB1P54 | $B7PHi?;F)B%?J:^$H$7$F%$%*%s1UBN$rMxMQ$7$?7PHiLtJ*AwC#%7%9%F%`$NAO@=(B | Ionic liquid Transdermal drug delivery system Vaccine | SE-1 | 454 | |
ZB1P55 | Development of a immunotherapic method by the transcutaneous route using a solid-in-oil nanodispersion technique | transcutaneous immunotherapy nanodispersion pollinosis | SE-1 | 721 | |
ZB1P56 | $B%a%i%N!<%^$r%?!<%2%C%H$H$7$?7PHi$,$s%o%/%A%s@=:^$X$N(BSolid-in-Oil$B2=5;=Q$N1~MQ(B | Transdermal drug delivery Cavcer vaccine Solid-in-oil (S/O) dispersion | SE-1 | 761 | |
ZB1P57 | $BC44b%^%&%9$rMQ$$$?%]%j%"%/%j%k;@=$>~2a;@2=%A%?%s%J%NN3;R$N@8BNFbJ,I[FC@-$ND4::(B | titanium nanoparticles mouse biodistribution | SE-1 | 306 | |
ZB1P58 | $B;@AG4D6-$N0c$$$,%^%&%9(BiPS$BfuMMBNFC@-$KM?$($k1F6A(B | iPS cells microwell chip PDMS | SE-1 | 190 | |
ZB1P59 | $B7V8wKlEE0L%$%a!<%8%s%0$K$h$k%"%a%U%i%7$NL#3PSO9%@-$H3X=,$K4X$o$k?@7P3hF0$N2r@O(B | imaging neuron taste | SE-1 | 514 | |
ZB1P60 | $B?UB!864p:YK&$rMQ$$$??UAH?%$N:F9=C[(B | metanephros transplantaion RWV | SE-1 | 521 | |
ZB1P61 | Sf9$B:+Cn:YK&I=AX$N(BGP64$B6a@\%?%s%Q%/ | Baculovirus Sf9 insect cell Biotin-protein ligase | SE-1 | 873 | |
ZB1P62 | $B<'>lM6F37?:YK&Fb6I=j2C29%7%9%F%`$K$h$k0dEA;RH/8=M6F3(B | gene therapy A Heat-inducible Transgene Expression System HSP promoter | SE-1 | 499 | |
ZB1P63 | $B;@2=4T851~Ez@-%O%$%I%m%2%kFb$G$N4J0W%9%U%'%m%$%I7A@.5Z$S2s<}5;=Q$N3NN)(B | spheroid redox-responsive hydrogel | SE-1 | 282 | |
ZB1P64 | $B%9%U%'%m%$%IM;9g8=>]$rMxMQ$7$?;0 | spheroid fusion microwell chip | SE-1 | 188 | |
ZB1P65 | $BB?AX>u%Q%?!<%s2=%O%$%I%m%2%k$N:n@=$H9bL)EY4N:YK&6&G]M\$X$N1~MQ(B | hydrogel patterning coculture | SE-1 | 708 | |
ZB1P66 | $B%3%i!<%2%sHyN3;R$rMxMQ$7$?LS:Y7l4IJqKd%V%m%C%/$N:n@=(B | Collagen microparticles Capillary network Tissue engineering | SE-1 | 717 | |
ZB1P67 | $B7l4IFbHi$*$h$SJ?3j6Z:YK&AX$rM-$9$k:YF0L.7l4IMM9=B$$N:n@=(B | tissue engineering vascular graft arterioles | SE-1 | 837 | |
ZB1P68 | $BLSH1:F@8G=$rM-$9$kLSJqAH?%$N%P%$%*%U%!%V%j%1!<%7%g%s(B | spheroid hair follicle epithelial-dermal interaction | SE-1 | 214 | |
ZB1P69 | $B<'NO$rMQ$$$?9|3J6ZAH?%9)3X5;=Q$K$h$kLt:^C5:w7O$N3+H/(B | drug screening tissue engineering skeletal muscle | SE-1 | 363 | |
ZB1P70 | $B%K%o%H%jfuHWMU:YK&$NLVMeE*H/8=0dEA;R2r@O$K$h$kB?G=@-44:YK&M6F30x;R$NC5:w(B | pluripotent stem cells transcriptome analysis transgenic chicken bioreactor | SE-1 | 364 |