$B:G=*99?7F|;~!'(B2012-03-08 11:32:01
absorbent (1$B7o(B) | ||||
---|---|---|---|---|
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 13-g (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
356 | $B%"%_%s5[<}1U$N(BCO2$B5[<}FC@-I>2A(B | 13-g | CO2 absorbent amine | 12/9 10:37:22 |
Absorption (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 4-d (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
89 | Selection of Amine Absorbents for CO2 Capture | 4-d | Absorption Carbon dioxide CO$2$ capture | 12/2 19:06:02 |
AC arc (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 3-b (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
187 | $B8rN.%"!<%/$NEE6K>CLWDc8:2=$N8!F$(B | 3-b | thermal plasma electrodes erosion AC arc | 12/7 12:59:41 |
acetic acid (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 1-a (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
414 | $B%l!<%68w;6Mp$rMxMQ$7$?GrByK!$K$h$k?];@(B+n-$B%"%k%+%s(B(C10-C13)$B7O$NAj8_MO2rEY$NB,Dj$HAj4X(B | 1-a | oxidative desulfurization LLE acetic acid | 12/9 13:44:34 |
Acinetobacter (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 7-g (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
412 | Acinetobacter sp. Tol 5$B$NHs@8J*I=LL$X$NIUCe$NI>2A(B | 7-g | bacterial adhesion biofilm Acinetobacter | 12/9 13:40:37 |
Acoustic cavitation bubble (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 4-b (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
12 | kHz$BBSD62;GH>H | 4-b | Solid-liquid separation Ultrasound Acoustic cavitation bubble | 11/15 13:55:08 |
Acrylamide Polyampholyte (APA) (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 13-f (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
311 | $B9bJ,;RN>@-EE2r | 13-f | Acrylamide Polyampholyte (APA) Volatile organic compound (VOC) VOC treatment system | 12/8 18:00:04 |
Activated carbon (2$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 9-c (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
554 | $B1v2=0!1t$rMQ$$$?LtIJIj3hK!$K$h$k3h@-C:$N@=B$(B | 4-e | Activated carbon Chemical activation Biomass | 12/9 18:10:41 |
635 | Preparation of activated carbon from extraction residue of brown coal | 9-c | Activated carbon Extraction residue Brown coal | 12/9 20:31:29 |
activated sludge (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 13-b (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
347 | $B3h@-1xE%$NGS?e=hM}G=$KM?$($kD62;GH<~GH?t$N1F6A(B | 13-b | activated sludge cavitation | 12/9 09:35:24 |
activation energy (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 9-b (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
133 | Effect of Lithium Bromide on Chemical Heat Storage Materials with Expanded Graphite | 9-b | chemical heat pump lithium bromide activation energy | 12/6 12:02:00 |
activity control (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 7-a (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
608 | PCNA$B%X%F%m(B3$BNLBN$rMQ$$$?(BP450$B$N3h@-@)8f(B | 7-a | Cytochrome P450 PCNA activity control | 12/9 19:44:26 |
adhesion force (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 12-a (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
282 | $B?eMO1UCf$N%,%i%9N3;R!&%^%$%+4pHD4VIUCeNOB,Dj$K$*$1$kJ|CV;~4V$N1F6A(B | 12-a | atomic force microscope adhesion force cationic adsorbed layer | 12/8 14:37:36 |
adsorption (13$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 4-e (4$B7o(B), 12-e (2$B7o(B), 13-g (2$B7o(B), 13-b (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
120 | $B8GBN5[Ce:`$rMQ$$$?(BCO2$B2s<}%7%9%F%`$N5[CeEc%7%_%e%l!<%?3+H/(B | 13-g | CO2 adsorption simulator | 12/5 18:54:36 |
176 | $BG[0L;R$H | 4-e | germanium complexation adsorption | 12/7 09:33:13 |
238 | $B%G%s%I%j%^!<3&LL$K$h$k%?%s%Q%/ | 7-i | dendrimer glyco adsorption | 12/7 22:37:10 |
259 | $BJ,;R%$%s%W%j%s%H9bJ,;R$NFC0[7k9g%5%$%H$NCr7?G;EY0MB8@-(B | 12-e | molecular imprinting chirality adsorption | 12/8 12:03:05 |
260 | $BG_43D4L#GQ1UCf$K4^$^$l$kM-5!J* | 13-b | Ume seasoning solution adsorption titanium oxide | 12/8 12:21:31 |
263 | ATRP$BK!$K$h$j4629@-%]%j%^!<$r%0%i%U%H$7$?<'@-HyN3;R$K$h$kFbJ,Hg3IMp2=3XJ* | 12-e | ATRP adsorption thermo-sensitive polymer | 12/8 12:38:06 |
269 | $B< | 13-g | carbon dioxide adsorption TSA | 12/8 13:21:32 |
285 | $BN22+86;R$HCbAG86;R$rM-$9$k?75,5[Ce:^$N9g@.$H6b(B($B-7(B)$B$*$h$SGr6b(B($B-8(B)$B$N5[CeJ?9U(B | 4-e | adsorption platinum equilibrium | 12/8 15:00:48 |
309 | $B3F | 4-e | Separation Carbon-dioxide adsorption | 12/8 17:52:52 |
563 | $B<+8JG.7?2~ | 9-e | Auto Thermal Reformer H2-PSA adsorption | 12/9 18:24:21 |
614 | $B%U%'%m%7%"%s2=J*$rMQ$$$?%;%7%&%`$N5[CeJ,N%(B | 13-i | adsorption coagulation-sedimentation cesium | 12/9 19:48:39 |
630 | $BL55!%$%*%s8r49BN$rMQ$$$?>K;@;@@-MO1U$+$i$NGr6bB285AGJ,N%(B | 13-e | adsorption ion exchange platinum group | 12/9 20:14:49 |
678 | $B%O%K%+%`5[Ce%m!<%?$rMQ$$$?=|<>5!$N@-G=8~>e5Z$S>J%(%M@-$K4X$9$k8&5f(B | 4-e | Honeycomb rotor Adsorption Energy saving | 12/9 23:37:43 |
Adsorption Induced Structural Transition (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 12-a (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
80 | $BB?9&@-G[0L9bJ,;R$,<($95[CeM65/9=B$E>0\8=>]$N<+M3%(%M%k%.!<2r@O5Z$SA+0\>uBVM}O@2r@O(B | 12-a | Porous Coordination Polymer Adsorption Induced Structural Transition Transition State Theory Analysis | 12/2 11:55:23 |
adsorptive fiber (2$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 13-i (2$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
594 | $B3$?eCf$N%9%H%m%s%A%&%`$r9bB.$K5[Ce=|5n$9$kA!0]$N:n@=(B | 13-i | strontium seawater adsorptive fiber | 12/9 19:18:17 |
612 | $B%;%7%&%`9bB.=|5n$N$?$a$N%O%$%V%j%C%I5[CeA!0](B | 13-i | cesium removal adsorptive fiber radiation-induced graft polymerization | 12/9 19:47:17 |
advanced oxidation process (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 12-c (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
370 | $B?eCf$N0eLtIJN`J,2r$K$*$1$kJ,;67?(BTiO2$B8w?(G^$N3+H/(B | 12-c | photocatalysts advanced oxidation process pharmaceuticals and personal care products | 12/9 11:26:55 |
Aerated stirred tank (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 2-d (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
76 | $BDL5$3IYBAe$N5$K"J,;6>uBV$r9MN8$7$?1UAjJ* | 2-d | Aerated stirred tank Mass transfer coefficient Bubble interactions | 12/1 21:17:12 |
Affinity peptide (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 7-c (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
617 | $B%W%m%F%*!<%`2r@O5;=Q$rMxMQ$7$?(BSi3N4$B4pHD?FOB@-%Z%W%A%I$NC1N%(B | 7-c | Si3N4 Affinity peptide Proteome analysis | 12/9 19:54:49 |
AFM (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 2-f (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
421 | $BN3;RI=LLJ*@-$,J,5i@-G=$K5Z$\$91F6A(B | 2-f | classification particle surface AFM | 12/9 13:56:30 |
Ag catalyst (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 9-e (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
350 | $B%"%k%+%jEE2r%,%93H;6EE6K$N6bB0(B-$B6u5$EECS$X$N1~MQ$HFC@-I>2A(B | 9-e | Metal-air Battery Oxygen Reduction Reaction Ag catalyst | 12/9 10:23:34 |
Ag/ZSM-5 (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 5-c (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
71 | 2$BAX%*%>%s1gMQ?(G^(B(ZSM-5/Ag/ZSM-5)$B$K$h$k%H%k%(%sJ,2rFC@-(B | 5-c | ozone-assisted catalyst ZSM-5 Ag/ZSM-5 | 12/1 16:25:57 |
AGC (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B F-2 (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
725 | [$B0MMj9V1i(B]$BFC | F-2 | green-innovation AGC XC213 | 1/12 15:36:18 |
agglomeration (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 12-l (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
520 | $B%9%F%C%W>u$;$sCGB.EYJQ2=$KBP$9$kHyN3;R6E=8BN$NGK2u2aDx(B | 12-l | particle dispersion rheology agglomeration | 12/9 17:18:23 |
aggregate (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 7-e (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
134 | $B0[ | 7-e | in silico culture co-culture aggregate | 12/6 12:15:41 |
aggregates (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 2-f (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
501 | $B1UAjCf$K$*$1$kN3;R6E=8BN8GM-$N05=LJQ7AFC@-$K4X$9$k?tCM%7%_%e%l!<%7%g%s(B | 2-f | compression behavior aggregates DEM | 12/9 16:54:25 |
aggregation (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 3-d (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
647 | $B%^%$%/%mGH>H | 3-d | microwave DLS aggregation | 12/9 21:05:38 |
Aggregation layer (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 8-e (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
699 | $BD6NW3&N.BNCf(BCu$BBO@Q2aDx$N$=$N>lJ,8w%(%j%W%=%a%H%j(B | 8-e | Supercritical fluids Spectroscopic ellipsometry Aggregation layer | 12/14 20:10:10 |
Aging (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 12-k (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
526 | UZM-4$B%<%*%i%$%H@8@.$K$*$1$k%(!<%8%s%02aDx(B | 12-k | Zeolite Crystallization Aging | 12/9 17:29:23 |
Agitation speed (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 12-g (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
162 | $B2sJ,<0D>@~Nd5Q>r7o2<$G3IYB>uBV$,Fs | 12-g | Batch crystallization Secondary nucleation Agitation speed | 12/6 20:04:22 |
AIChE (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B F-2 (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
733 | [$B>7BT9V1i(B]CCPS$B%W%m%;%90BA4%a%H%j%C%/%9$N:n@.L\E*(B | F-2 | green-innovation AIChE XD216 | 1/12 16:28:56 |
Air revitalization (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 13-g (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
693 | $B1'ChA%Fb$K$*$1$k6u5$7O@8L?0];}5;=Q(B | 13-g | CO2 removal CO2 reduction Air revitalization | 12/12 09:56:36 |
Airborne virus (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 5-f (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
81 | $B%^%$%/%m2=3X%W%m%;%9$rMQ$$$?%_%9%HI8<1K!$K$h$k%&%$%k%9?WB.8!CN(B | 5-f | Microreactor Mist Airborne virus | 12/2 12:34:12 |
Alarm Signal Selection (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 6-a (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
494 | $B%"%i!<%`$NH/Js=g$r9MN8$7$?%W%i%s%H%"%i!<%`JQ?tA*BrK!(B | 6-a | Plant Alarm System Cause-Effect Model Alarm Signal Selection | 12/9 16:44:27 |
alcohol (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 8-b (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
366 | $BJ,;RF0NO3XK!$K$h$k9b299b05?e(B-$B%a%?%N!<%k7O$N?eAG7k9g | 8-b | alcohol MD hydrogen bond | 12/9 11:20:45 |
alcohol/water reforming (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 9-e (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
206 | $B%"%k%3!<%k!&?e:.9g1U$+$i$N9b05=c?eAGDcAO@8$H | 9-e | high-pressurized pure hydrogen alcohol/water reforming low-temperature operation | 12/7 16:04:11 |
ALD (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 5-h (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
303 | $B%3%P%k%H%;%s$H%"%s%b%K%"2rN% | 5-h | Hot-wire ALD exhaust gas | 12/8 17:33:21 |
alkali pretreatment (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 5-g (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
655 | $B%?%1$+$i$N%P%$%*%(%?%N!<%k@8@.$K$*$1$kHy:Y2=$H%"%k%+%j=hM}$N8z2L(B | 5-g | bioethanol bamboo powder alkali pretreatment | 12/9 21:23:03 |
Allergy (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 7-a (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
486 | $B0dEA;RF3F~%K%o%H%j$,@8;:$7$?%(%T%H!<%W%Z%W%A%I4^M-MqGr$K$h$k%9%.2VJ4>I<#NE(B | 7-a | Allergy Japanese cedar pollen genetically manipulated chicken | 12/9 16:27:58 |
alloy catalyst (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 5-a (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
469 | Ni$B$r4^$`9g6b$r;@2==hM}$7$??(G^$K$h$kC:2=?eAG2~ | 5-a | alloy catalyst reforming carbon deposit | 12/9 15:50:33 |
AlPO4-18 (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 4-a (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
395 | $B%"%k%_%N%j%s;@1v7O%<%*%i%$%H(BAlPO4-18$B$NGvKl2=(B | 4-a | AlPO4-18 membrane H2O/AcOH separation | 12/9 13:01:53 |
Aluminum hydroxide (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 13-b (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
174 | $B3&LL3h@-:^$rMQ$$$k9b8zN(?e;@2=%"%k%_%K%&%`6E=8D@EB7O$N@_7W$H?eCfLtJ*$N?WB.=|5n(B | 13-b | Surfactant Aluminum hydroxide Pharmaceuticals and personal care products | 12/7 07:46:10 |
alumite discharge erectrode (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 2-d (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
151 | $B%"%k%^%$%HJ|EEEE6K$rMQ$$$?%*%>%s?e@8@.4o$N3+H/$K4X$9$k8&5f(B | 2-d | alumite discharge erectrode ozone water micro bubble | 12/6 15:46:07 |
amine (6$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 13-g (3$B7o(B), 8-d (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
34 | $B%"%_%sCf$G$N%^%0%M%?%$%H%J%NN3;R$N<+H/E*%7%j%+%3!<%F%#%s%07A@.(B | 12-c | core-shell amine magnetite nanoparticle | 11/25 17:38:49 |
345 | $B%"%_%s2=3X5[<}K!$K$h$k(BCO2$BJ,N%2s<}%(%M%k%.!<$NI>2A(B | 13-g | CO2 chemical absorption amine | 12/9 09:29:47 |
356 | $B%"%_%s5[<}1U$N(BCO2$B5[<}FC@-I>2A(B | 13-g | CO2 absorbent amine | 12/9 10:37:22 |
372 | $B%]%j%(%A%l%s%F%l%U%?%l!<%H$N2r=E9gH?1~$K$*$1$k%"%_%sG.?e$N8z2L(B | 13-e | Poly(ethylene terephthalate) Hydrothermal Amine | 12/9 11:30:11 |
374 | $B%]%j%+!<%\%M!<%H$N?eG.2r=E9gH?1~$K$*$1$kE:2C%"%_%s | 8-d | Polycarbonate Hydrothermal Amine | 12/9 11:36:22 |
512 | $B4J0WI>2AAuCV$rMQ$$$?9bJ|;6@-%"%_%s5[<}1U$NC5:w(B | 13-g | CO2 chemical absorption amine | 12/9 17:06:22 |
Amine solution (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 13-g (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
265 | 3$B5i%8%"%_%s$KBP$9$k(BCO2$B5[<}5sF0(B | 13-g | CO2 capture and storage Amine solution | 12/8 12:45:30 |
amino acid (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 4-a (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
493 | $B%j%]%=!<%`$K$h$k%-%i%kG'<15!G=$K4X$9$k8&5f(B | 4-a | liposome chiral recognition amino acid | 12/9 16:41:42 |
Amino acid ionic liquid (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 4-a (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
95 | $B%"%_%N;@%$%*%s1UBN$rH?1~M"AwG^BN$H$9$k3W?7E*(BCO2$BJ,N%Kl$NAO@=(B | 4-a | Amino acid ionic liquid CO2 separation Facilitated transport membrane | 12/2 21:10:07 |
ammonia (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 9-e (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
271 | $B6bB0C4;}?(G^$rMQ$$$?%"%s%b%K%"J,2r?eAG@=B$$K$*$1$k?(G^C4BN$N1F6A(B | 9-e | ammonia hydrogen production catalyst | 12/8 13:39:24 |
ammonia decomposition (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 5-d (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
270 | $BKlH?1~4o$rMQ$$$?Dc29%"%s%b%K%"J,2r(B | 5-d | ammonia decomposition membrane reactor hydrogen yield | 12/8 13:31:20 |
ammonia-nitrogen uptake (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 7-i (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
428 | $BITL-@-3$At$K$h$k3+H/ES>e9q7?=8Ls%(%SM\?#CS$N?e | 7-i | Ulva sp. growth rate shrimp ponds ammonia-nitrogen uptake | 12/9 14:14:14 |
ammonium sulfate (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 5-g (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
393 | $B2 | 5-g | sewage sludge char gas cleaning ammonium sulfate | 12/9 12:55:15 |
amorphous (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 12-c (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
168 | $BJ4:U$H:F7k>=2=K!$rAH$_9g$o$;$?%<%*%i%$%H%J%NJ4BN$N?75,D4@=K!(B | 12-c | zeolite nano particle amorphous | 12/6 21:53:21 |
Amorphous calcium silicate hydrate (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 13-e (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
334 | $BHs>= | 13-e | Amorphous calcium silicate hydrate Phosphorus recovery | 12/8 21:17:36 |
amorphous sugar (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 7-h (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
536 | $BE|N`%"%b%k%U%!%9%^%H%j%/%9$N%?%s%Q%/ | 7-h | amorphous sugar protein denaturation compression | 12/9 17:53:50 |
Amospheric Pressure (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 5-e (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
98 | $BBg5$05D>N.J|EE$K$h$k?e%W%i%:%^$rMQ$$$?Fq?eMO@-M-5!J*$NJ,2r(B | 5-e | DC Water Plasma Amospheric Pressure O/W Emulsion | 12/3 13:55:06 |
Amyloid (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 4-g (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
476 | $B%"%_%m%$%I@~0]7A@.$K5Z$\$9%j%]%=!<%`(B/$BF<%$%*%s$N1F6A(B | 4-g | Liposome Amyloid Copper ion | 12/9 16:12:34 |
amyloid beta (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 7-a (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
119 | $BJ,;R%7%c%Z%m%s$K$h$k%"%_%m%$%I%Y!<%?%*%j%4%^!<$N8!=P(B | 7-a | amyloid beta molecular chaperone oligomer | 12/5 17:59:18 |
an advanced chemical method (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 12-k (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
217 | $B?75,%A%*%7%j%1!<%H(B(Ca, Sr, Eu)8Si5S18$B$N9g@.$H$=$NH/8wFC@-I>2A(B | 12-k | new thiosilicates new phosphors an advanced chemical method | 12/7 17:33:40 |
Anaerobic Digestion (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 13-b (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
669 | $B7y5$@->C2=$NA0=hM}$H$7$FMQ$$$k9b299b05?eH?1~$K$h$k2uJQ2=(B | 13-b | Hydrothermal Reaction Anaerobic Digestion Sewage Sludge | 12/9 21:56:32 |
angiogenesis (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 7-e (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
390 | $BEE5$2=3X:YK&C&N%$H8w2M66@-%O%$%I%m%2%k$rMQ$$$?7l4ILV9=B$$N9=C[(B | 7-e | tissue engineering angiogenesis vascular | 12/9 12:42:23 |
Anion exchange membrane (2$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 4-a (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
292 | $BA48GBN7?%"%k%+%jG3NAEECS$K$*$1$k?e0\F0$HH/EE@-G=(B | 9-e | Water movement Anion exchange membrane Optimization of humidification | 12/8 16:15:44 |
496 | Modification of anion exchange membrane for antifouling improvement | 4-a | antifouling potential Anion exchange membrane electrodialysis | 12/9 16:45:44 |
anion-exchange membrane (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 9-e (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
139 | $BG3NAEECSMQ%"%K%*%s8r49Kl$N?e$N>uBV@)8f$K$h$kKl@-G=8~>e(B | 9-e | fuel cell anion-exchange membrane water state | 12/6 12:58:36 |
anionic surfactant (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 13-b (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
255 | $B1"%$%*%s@-3&LL3h@-:^$G=$>~$7$?AX>uJ#?e;@2=J*$K$h$kM-5!1x@wJ* | 13-b | LDH anionic surfactant organic pollutant | 12/8 10:59:25 |
anisotoropic (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B F-3 (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
753 | Anisotoropic Assembly of Isotropic Nanoparticles by Macrooperation | F-3 | anisotoropic nanoparticle | 1/18 11:33:00 |
Anode (2$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 9-e (2$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
340 | $BCf9b290h$K$*$1$k(BNi/$B%;%j%"7O8GMOBNG3NA6K$N2aEE055sF0(B | 9-e | SOFC Anode Doped Ceria | 12/9 03:02:42 |
381 | $B;02AKt$OFs2A$N6bB0%$%*%s$r%I!<%W$7$?(BCeO2$B7OG3NA6K$NFC@-(B | 9-e | Anode Doped Ceria SOFC | 12/9 12:06:26 |
anodic oxidation (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 13-b (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
115 | Ti/IrO2-Ta2O5$BEE6K$rMQ$$$?%H%j%/%m%m%(%A%l%s$NEE5$J,2r(B | 13-b | trichloroethylene electrolysis anodic oxidation | 12/5 14:45:47 |
anodic oxide film (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 9-e (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
607 | $B9=B$@)8f$KCeL\$7$?L55!(Bp-i-n$B7?B@M[EECS$N:n@=$HFC@-I>2A(B | 9-e | photovoltaic bulk heterojunction anodic oxide film | 12/9 19:42:09 |
Anti-solvent (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 12-g (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
212 | $BHsMOG^E:2C>=@O$G$NJQD4A`:n$rMxMQ$7$?M-5!7k>=$NN37BJ,I[@)8f(B | 12-g | Crystallization Anti-solvent Modulated operation | 12/7 16:50:10 |
Antibiofouling (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 4-a (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
502 | Development of antibiofouling RO membrane by layer-by-layer method | 4-a | Layer-by-layer Antibiofouling RO membrane | 12/9 16:55:07 |
antibody (6$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 7-e (4$B7o(B), 7-a (2$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
264 | $B93BN%i%$%V%i%j! | 7-e | chimeric receptor antibody library selection | 12/8 12:42:46 |
280 | $BCAGr | 7-e | receptor signal transduction antibody | 12/8 14:30:15 |
306 | $B%-%a%i | 7-e | receptor antibody apoptosis | 12/8 17:43:10 |
449 | $B93BN@:@=MQ%Z%W%A%I%j%,%s%I$NC5:w(B | 7-a | peptide antibody purification | 12/9 15:07:19 |
499 | $B7V8wI8<193BN(B Quenchbody $B$N?'AG$N8!F$$H$=$NF0E*2r@O(B | 7-a | Antibody Fluorescence Quench | 12/9 16:50:55 |
658 | $BCAGr | 7-e | antibody chemical conjugate cancer | 12/9 21:35:05 |
antibody selection (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 7-e (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
147 | $B:YK&A}?#3h@-$r;XI8$H$7$?93BNA*BrK!(B | 7-e | antibody selection chimeric receptor cell growth | 12/6 14:58:20 |
antifouling (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 4-a (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
222 | $B%]%j%^! | 4-a | antifouling molecular dynamics polymer membrane | 12/7 17:57:28 |
antifouling potential (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 4-a (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
496 | Modification of anion exchange membrane for antifouling improvement | 4-a | antifouling potential Anion exchange membrane electrodialysis | 12/9 16:45:44 |
apoptosis (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 7-e (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
306 | $B%-%a%i | 7-e | receptor antibody apoptosis | 12/8 17:43:10 |
applicability domain (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 6-e (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
422 | $B8zN(E*$J | 6-e | experimental design applicability domain QSPR | 12/9 14:00:26 |
Approximate Design (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 4-c (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
14 | Design of Internally Heat-Integrated Distillation Columns Using Matrix Inversion | 4-c | Internally Heat-Integrated Distillation Energy-Efficient Distillation Approximate Design | 11/16 10:32:25 |
aqueous polymerization (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 12-a (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
382 | $BC1J,;6%]%j%^!<%J%NN3;R9g@.$K8~$1$??eAj@O=P=E9g$N?7E83+(B | 12-a | monodisperse polymer nanoparticle aqueous polymerization ionic surfactant | 12/9 12:13:03 |
aqueous solution method (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 12-k (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
197 | $B?eMO1U%W%m%;%9$rMQ$$$?%7%j%3%s%*%-%7%J%$%H%i%$%I7O7V8wBN$N9g@.(B | 12-k | aqueous solution method water soluble silicon sompound oxynitride phosphor | 12/7 14:36:51 |
Aridland afforestation (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 13-g (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
297 | $B4%AgCO?"NS$K$h$kFs;@2=C:AG8GDj!! | 13-g | Aridland afforestation Plant growth simulation Granier method | 12/8 16:39:45 |
aromatic hydrocarbon (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 8-b (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
550 | $B9b299b05?e(B+$BC:2=?eAG:.9gL}(B3$B@.J,7O$N1U1UJ?9U$K$*$1$kAj5UE>8=>](B | 8-b | aromatic hydrocarbon high temperature and pressure water phase transfer | 12/9 18:02:31 |
aromatization (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 5-a (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
361 | $B7Z | 5-a | zeolite aromatization p-xylene | 12/9 10:54:25 |
arylsulfotransferase (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 7-a (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
331 | Salmonella enterica$BM3Mh(BArylsulfotransferase$B$NFC@-$H1~MQ8!F$(B | 7-a | arylsulfotransferase sulfation enzyme | 12/8 20:43:33 |
asahi-kasei (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B F-2 (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
736 | [$BE8K>9V1i(B]$B4D6-$H$N6&@8(B:$B2=3X4k6H$N0U;V$H9TF0(B-$B002=@.%0%k!<%W$rNc$H$7$F(B- | F-2 | green-innovation asahi-kasei XD220 | 1/12 16:44:06 |
Ascorbic acid (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 7-h (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
230 | PREPARATION AND CHARACTERIZATION OF WATER-IN-OIL EMULSIONS CONTAINING HIGHER CONCENTRATION OF ASCORBIC ACID | 7-h | Ascorbic acid Water-in-oil emulsions Higher concentration | 12/7 19:01:53 |
Ash effect (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 5-a (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
479 | $BCbAG=$>~%O%$%Q!<%3!<%k?(G^$NG3NAEECS%+%=!<%I3h@-$H3%J,J* | 5-a | Hypercoal PEFC Ash effect | 12/9 16:17:39 |
ASOG (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 1-a (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
130 | 3$B@.J,7O1U1UJ?9U$NB,Dj$H(BASOG$B$K$h$k?d;;(B | 1-a | liquid-liquid equilibria ASOG NRTL equation | 12/6 11:39:00 |
aspect ratio (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 12-g (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
57 | $BH?1~>=@OK!$K$h$kC:;@%9%H%m%s%A%`%`Hy7k>=$N%"%9%Z%/%HHf@)8f(B | 12-g | ractive crystallization strontium carbonate aspect ratio | 12/1 06:50:22 |
Aspergillus niger (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 7-a (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
462 | Xylanase production of Aspergillus niger by using liquid surface fermentation | 7-a | xylanase Aspergillus niger liquid surface fermentation | 12/9 15:37:38 |
asymmetric (2$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B F-4 (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
747 | Directional Properties Derived from Hierarchical Asymmetric Structures | F-3 | Hierarchical Asymmetric | 1/18 11:01:10 |
762 | Microfiltration of Cell Suspensions with Asymmetric Depth Filters | F-4 | microfilitration asymmetric | 1/18 12:54:46 |
atmospheric plasma (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 5-c (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
336 | $B;@AG$r4^$`%"%k%4%s%W%i%:%^%8%'%C%HH?1~>l$N3hMQ(B | 5-c | atmospheric plasma plasma-jet oxygen | 12/8 21:45:11 |
Atmospheric Pressure Plasma Jet (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 5-h (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
326 | Fabrication of a-C:H thin film by Atmospheric Pressure Plasma Jet for Liquid Crystal Alignment | 5-h | Atmospheric Pressure Plasma Jet Liquid Crystal alignment Thin film deposition | 12/8 19:57:48 |
atom transfer radical polymerization (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 12-e (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
142 | $B@8BNE,9g@- | 12-e | dendritic polymer hydrogel atom transfer radical polymerization | 12/6 13:28:17 |
atomic force microscope (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 12-a (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
282 | $B?eMO1UCf$N%,%i%9N3;R!&%^%$%+4pHD4VIUCeNOB,Dj$K$*$1$kJ|CV;~4V$N1F6A(B | 12-a | atomic force microscope adhesion force cationic adsorbed layer | 12/8 14:37:36 |
atomization (3$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 5-b (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
484 | $BD62;GHL82=$K$h$k%W%m%Q%N!<%k?eMO1U$NJ,N%2s<}(B | 5-b | ultrasound atomization propanol | 12/9 16:27:49 |
521 | $BJ.L84%Ag$K$h$kD6=c?eCf$N%J%NN3;R7WB,$K$*$1$kMO2r@.J,$N1F6A(B | 2-f | Ultra-Pure-Water Atomization Involatile dissolved component | 12/9 17:19:39 |
591 | $BD62;GHL82=J,N%$K$*$1$k%_%9%HNd5Q6E=L2aDx$N>h?t8z2L(B | 4-i | ultrasound atomization mist condensation | 12/9 19:17:11 |
ATRP (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 12-e (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
263 | ATRP$BK!$K$h$j4629@-%]%j%^!<$r%0%i%U%H$7$?<'@-HyN3;R$K$h$kFbJ,Hg3IMp2=3XJ* | 12-e | ATRP adsorption thermo-sensitive polymer | 12/8 12:38:06 |
Auto Thermal Reformer (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 9-e (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
563 | $B<+8JG.7?2~ | 9-e | Auto Thermal Reformer H2-PSA adsorption | 12/9 18:24:21 |
Autogenous grinding (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 2-f (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
258 | $B<+@8J4:U$K$*$1$k:UNA5sF0$HJ4:U2aDx$N(BDEM$B%7%_%e%l!<%7%g%s(B | 2-f | Discrete element method Autogenous grinding Tumbling mill | 12/8 11:51:51 |
Autothermal reforming (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 9-e (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
464 | $B<+8JG.7?2~ | 9-e | Autothermal reforming Hydrogen efficiency | 12/9 15:41:14 |
avidin-biotin system (ABS) (1$B7o(B) | ||||
$B$3$N%-!<%o!<%I$,$h$/;H$o$l$F$$$k%7%s%]%8%&%`!&9V1iJ,N`!'(B 7-b (1$B7o(B) | ||||
$B | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(B | $B | | |
266 | $B?75,%?%s%Q%/ | 7-b | transglutaminase bioconjugation avidin-biotin system (ABS) | 12/8 12:51:50 |