B $B2q>l(J | |||||
---|---|---|---|---|---|
$B9V1i(J $B;~9o(J | $B9V1i(J $BHV9f(J | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(J | $BJ,N`(J | $BHV9f(J $B | |
$B%7%s%]%8%&%`(J <$B@8J*J,N%9)3X$N?JJb$HE8K>!!!]J,;RG'<1$+$i%J%N!&%_%/%mJ,N%$^$G!](J> | |||||
(13:00$B!A(J13:40) ($B;J2q(J $BEDCf(J $B9'L@(J) | |||||
B113 | [$BE8K>9V1i(J] $B%^%$%/%m%U%k%$%G%#%/%9$rMxMQ$7$?HyN3;R!&:YK&$NO"B3J,N%(J | Cell Sorting Microfluidics Continuous Separation | S-8 | 151 | |
(13:40$B!A(J15:00) ($B:BD9(J $BEDCf(J $B9'L@!&5HK\(J $B@?(J) | |||||
B115 | $B8w1~Ez@-:`NA$rMQ$$$??75,:YK&A*JL5;=Q(J | photo-responsible material cell separation cell-based assay | S-8 | 738 | |
B116 | $BHsMOG^M65/AjJ,N%K!$rMQ$$$?%]%jF};@@=_I2aKl$N:n@=$HI>2A(J | microfiltration membrane poly(L-lactic acid) surfactant | S-8 | 142 | |
B117 | $B%R%I%m%-%7%"%Q%?%$%H%^%$%/%m%+%W%;%k$N%?%s%Q%/ | hydroxyapatite microcapsule adsorption | S-8 | 140 | |
B118 | $BN>@-%$%*%s8r49 | adsorption isotherms amphoteric ion-exchange resin salts | S-8 | 68 | |
(15:00$B!A(J16:20) ($B:BD9(J $B?e8}(J $BOB?.!&Cf@n(J $B5fLi(J) | |||||
B119 | RNA$BJ,;RG'<1$N$?$a$N%j%]%=!<%`Kl%G%6%$%s(J | Membranome Liposome design RNA recognition | S-8 | 830 | |
B120 | PEG$B2=%?%s%Q%/ | chromatography PEGylated protein electro-static interaction | S-8 | 438 | |
B121 | $B9)6HE`7k4%Ag%W%m%;%9$K$*$1$k%?%s%Q%/ | freeze-drying protein freeze-drying | S-8 | 784 | |
B122 | $B3F | freeze-drying protein stabilization sugar surfactant | S-8 | 679 | |
C $B2q>l(J | |||||
$B9V1i(J $B;~9o(J | $B9V1i(J $BHV9f(J | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(J | $BJ,N`(J | $BHV9f(J $B | |
$B%7%s%]%8%&%`(J <$B%P%$%*J,;R%O%$%V%j%C%I2=$K$h$k?75,J,;R!&%W%m%;%9AO@.$X$ND)@o(J> | |||||
(13:00$B!A(J13:40) ($B:BD9(J $BCfLn(J $B=(M:(J) | |||||
C113 | $B:YK&7O$K$h$k?75,7V8wLH1V%;%s%5!<(JQuenchbody$B$N9=C[$H$=$N%P%$%*%$%a!<%8%s%0$X$N1~MQ(J | protein engineering antibody fluorescence | S-7 | 437 | |
C114 | [$B>7BT9V1i(J] $BJQ@->uBV$N%?%s%Q%/ | Protein engineering Chemical modification Companion diagnostics | S-7 | 369 | |
(13:40$B!A(J15:00) ($B:BD9(J $B>eED(J $B9((J) | |||||
C115 | $B:`NAI8E*93BN$rIE$H$7$?%P%$%*%;%s%5!<;X8~%$%s%?!<%U%'%$%9@_7W(J | antibody biosensor molecular evolution | S-7 | 514 | |
C116 | [$BE8K>9V1i(J] $B%Z%W%A%I$K$h$k3&LL%G%6%$%s$+$i%;%k%m!<%9?(G^$X(J | peptide polymer cellulose | S-7 | 156 | |
C118 | $B%(%i%9%A%sM3Mh%]%j%Z%W%A%I$H%<%i%A%s$+$i$J$kB->l:`NA$NAO@=(J | elastin-like polypeptides scaffold electrospinning | S-7 | 753 | |
(15:00$B!A(J16:00) ($B:BD9(J $B>eJ?(J $B@5F;(J) | |||||
C119 | $B8GBN:`NA?FOB@-%Z%W%A%I%?%0$rMQ$$$?5!G=E*%P%$%*J,;R8GDj2=5;=Q$N3+H/$H$=$N1~MQ(J | biomolecular interaction immobilization | S-7 | 749 | |
C120 | $B<+8J=89g%Z%W%A%I$N%J%N9=B$@)8f$H:YK&G]M\4p:`$X$N1~MQ(J | Peptide Amphiphiles Self-Assembled Structure Artificial Extracellular Matrix | S-7 | 968 | |
C121 | $B%P%$%*%$%s%?!<%U%'!<%9$rJq$`9g@.2=3X%D!<%k$N3+H/(J | chemical tool photocleavable hydrogel | S-7 | 504 | |
(16:00$B!A(J17:00) ($B:BD9(J $B;38}(J $BE/;V(J) | |||||
C122 | [$BE8K>9V1i(J] $B@8:YK&$G$N2=3X%W%m!<%V!?CAGr@\%O%$%V%j%C%I2=$K$h$k5!G=2=(J | protein-probe hybrid chemical biology chemical probe | S-7 | 153 | |
C124 | $B%(%^%k%8%g%s(JPCR$B$rMQ$$$?%^%$%/%m%S!<%:>e$X$N(JDNA$B%G%#%9%W%l%$5;=Q$H$=$N1~MQ(J | emulsion PCR cell-free protein synthesis high-throughput screening | S-7 | 491 | |
(17:00$B!A(J17:40) ($B:BD9(J $BCfLn(J $B=(M:(J) | |||||
C125 | $B93BN(J/$B | antibody receptor chimeric protein | S-7 | 479 | |
C126 | $B%Z%W%A%I%"%W%?%^!<$NFC@-$rMxMQ$7$?%+!<%\%s%J%N%A%e!<%VGvKl%H%i%s%8%9%?$N:n@=(J | peptide aptamer thin-film transistor carbon nanotube | S-7 | 856 | |
(17:40$B!A(J18:20) ($B:BD9(J $BFs8+(J $B=_0lO:(J) | |||||
C127 | $B%+%<%$%s2C?eJ,2rJ*$H$NJ#9g2=$K$h$kFq?eMO@-LtJ*$N?eMO@-8~>e(J | solubility poorly water-soluble casein hydrolysate | S-7 | 875 | |
C128 | $B%A%m%7%s;@2=%+%C%W%j%s%0H?1~$r2p$7$?9b?FOB@-%W%m%F%$%s(JG$B%]%j%^!<$NAO@=(J | Protein polymerization Multivalent effect horseradish peroxidase | S-7 | 964 | |
D $B2q>l(J | |||||
$B9V1i(J $B;~9o(J | $B9V1i(J $BHV9f(J | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(J | $BJ,N`(J | $BHV9f(J $B | |
$B%7%s%]%8%&%`(J <$B0eMQ2=3X9)3X$N%K!<%:$H%7!<%:!!!]$3$l$+$i$NE8K>!](J> | |||||
(10:00$B!A(J11:20) ($B:BD9(J $BNS(J $B7 | |||||
D104 | Preparation of uniform-sized hemoglobin-albumin microspheres as oxygen carriers by Shirasu porous glass membrane emulsification technique | Oxygen carriers SPG membrane Membrane emulsification | S-9 | 778 | |
D105 | $B%(%^%k%7%g%sFb2M66%W%m%;%9$K$h$k%J%N%2%k2M66%^%$%/%m%9%U%'%"$N3+H/(J | polysaccharides emulsion drug delivery | S-9 | 82 | |
D106 | $B%9%Q%s7O3&LL3h@-:^$K$h$k%Y%7%/%k$ND4@=$J$i$S$KKlFC@-I>2A(J | vesicle membrane DDS | S-9 | 615 | |
D107 | $B%^%/%m%U%!!<%8$rI8E*$H$7$??75,%+%j%&%`%$%*%s1~Ez@-%G%s%I%j%F%#%C%/%]%j%^!<$NAO@=(J | dendritic polymer potassium ion macrophage | S-9 | 597 | |
(11:20$B!A(J12:00) ($B;J2q(J $B:j;3(J $BN<0l(J) | |||||
D108 | [$B>7BT9V1i(J] $B9b51EYH/8w%?%s%Q%/ | Nano-lantern | S-9 | 100 | |
(13:00$B!A(J14:20) ($B:BD9(J $B?eK\(J $BGn!&0KF#(J $BBgCN(J) | |||||
D113 | $B<+8JAH?%2=%Z%W%A%I$rMQ$$$?G]M\;.I=LL$N@_7W(J | Tissue engineering Zwitterionic oligoepeptide Electrochemistry | S-9 | 527 | |
D114 | $B%^%$%/%m%Q%?!<%K%s%05;=Q$rMxMQ$7$?(JES$BfuMMBNG]M\(J | Micropatterning culture Embryoid body ES cells | S-9 | 563 | |
D115 | $BJ,;R%$%s%W%j%s%H9bJ,;R$N8GDjEE6K$rMQ$$$?%X%Q%j%s%;%s%5$NA*Br@-(J | Heparin Molecularly Imprinted Polymer Sensor | S-9 | 18 | |
D116 | $B7l1U>t2=NEK!$K$*$1$kA`:n>r7o$K$h$kMO | Hemodiafitration Artificial kidney Clearance | S-9 | 96 | |
(14:20$B!A(J15:00) ($B;J2q(J $B0fEh(J $BGnG7(J) | |||||
D117 | [$B>7BT9V1i(J] $B4NC@g9302J$K$*$1$k0e9)O"7H$NL$Mh(J | Hepato-Biliary-Pancreatic surgery Medicine-Engineering collaboration Hybrid artificial liver | S-9 | 393 | |
(15:00$B!A(J16:20) ($B:BD9(J $BB@ED(J $B@?0l!&Cf_7(J $B9@Fs(J) | |||||
D119 | $Bg9Eg:F@8%W%m%;%9$NA[Dj$H%3%9%H;n;;(J | regenerative medicine islet diabetes | S-9 | 1016 | |
D120 | $BCf6u;e(J/$B%*%k%,%N%$%IG]M\K!$rMxMQ$7$?%R%H(JiPS$B:YK&$N4NJ,2=M6F3(J | Human iPS cells Hepatic differentiation Bioartificial liver | S-9 | 341 | |
D121 | $B7l4ILV$rM-$9$kB!4oCr7?$H$7$F$NC&:YK&2=4NB!$N:F:YK&2=(J | liver decellularized liver recellularization | S-9 | 996 | |
D122 | $BC&:YK&2=B!4o$HA}?#0x;R8GDj2=(JECM$B$K4p$E$/B!4o9)3X(J | Whole Organ Engineering Decellularized Liver GF-immobilizable ECM | S-9 | 392 | |
E $B2q>l(J | |||||
$B9V1i(J $B;~9o(J | $B9V1i(J $BHV9f(J | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(J | $BJ,N`(J | $BHV9f(J $B | |
$B%7%s%]%8%&%`(J <$B%P%$%*0eLt@=B$$H@8J*>pJs3X(J> | |||||
(9:40$B!A(J10:40) ($B:BD9(J $BBl8}(J $B>:(J) | |||||
E103 | [$BE8K>9V1i(J] $B%P%$%*0eLtIJ@8;:$K$*$1$k%;%k%(%s%8%K%"%j%s%0(J | cell engineering biologics production Chinese hamster overy cell | S-10 | 59 | |
E105 | $B%2%N%`%9%1!<%k%R%HBe | $BBe$B%R%H(J $B%2%N%`(J | S-10 | 415 | |
(10:40$B!A(J11:40) ($B:BD9(J $BARED(J $BGnG7(J) | |||||
E106 | [$B0MMj9V1i(J] $B:YK&FbBepJs$rMxMQ$7$?%P%$%*0eLtIJ@=B$%W%m%;%9@_7W(J | biopharmaceutical manufacturing metabolic flux analysis shear stress | S-10 | 497 | |
E108 | $B%a%?%\%m%_%/%9%G!<%?$rMQ$$$?Be | Metabolic Engineering Metabolomics Metabolic Flux Analysis | S-10 | 395 | |
(11:40$B!A(J12:00) ($B;J2q(J $BBg@/(J $B7r;K(J) | |||||
E109 | $B%^%&%9$K$*$$<1JL$K$*$1$kA*BrE*Cm0U%b%G%k$N:YK&G]M\7O$X$N1~MQ8!F$(J | olfactory information processing selective attention model cell culture system | S-10 | 505 | |
-$B | |||||
$B | |||||
$B | |||||
$B:)?F2q(J($B2q>l!'@86(%T!<%AEo(J 4F) | |||||
F $B2q>l(J | |||||
$B9V1i(J $B;~9o(J | $B9V1i(J $BHV9f(J | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(J | $BJ,N`(J | $BHV9f(J $B | |
$B%7%s%]%8%&%`(J <$B?)IJ9)3X$NL$Mh$r6&A[$9$k$?$a$K(J> | |||||
(13:20$B!A(J14:00) ($B;J2q(J $B:#B<(J $B0]9n(J) | |||||
F114 | [$BE8K>9V1i(J] $B@v>t!&;&6]A`:n$K$*$1$k | cleaning sterilization hypochlorous acid | S-12 | 1018 | |
(14:00$B!A(J15:20) ($B:BD9(J $B>.@>(J $BLwG7!&66K\(J $BFF(J) | |||||
F116 | $B%^%$%/%mGH2CG.;~ | Microwave cooking Fish Modeling | S-12 | 218 | |
F117 | $B$<$sF01?F0$rHw$($??75,$J0_>C2=%7%_%e%l!<%?!<$N3+H/$H?)IJ>C2=5sF0$N2D;k2=!&2r@O(J | GI-tract Peristalsis in vitro model | S-12 | 487 | |
F118 | $B5{>F@.;~$N29EYMzNr$K4p$E$/>F$-?'$N2r@O(J | Color Far-infrared radiation Fish | S-12 | 748 | |
F119 | $B2aG.?e>x5$$N?a$-IU$1B.EY$r9MN8$7$?Ho2CG.J*$NEAG.2r@O(J | Super-heated steam CFD Heat transfer | S-12 | 836 | |
(15:20$B!A(J16:40) ($B:BD9(J $B | |||||
F120 | $BL#IU$1LM$N@V30@~(J-$BG.IwJ;MQ4%AgFC@-$K5Z$\$9G.Iw29EY$N1F6A(J | Drying time Combined Infrared and Convective Drying Seasoned Instant Noodles | S-12 | 923 | |
F121 | $B1"%$%*%s8r49 | adsorption ion-exchange resin vitamin E | S-12 | 883 | |
F122 | $B?)IJ%2%k$KBP$9$kD4L#@.J,$NJ,G[78?t$H3H;678?t(J | distribution coefficient distribution coefficient food gels | S-12 | 69 | |
F123 | $B?eOB?e<+8JAH?%2=$+$i4Q$??)IJ<+8JAj;w@-(J | Molecular Mobility of Water Self-organization Proton NMR Analysis | S-12 | 445 | |
G $B2q>l(J | |||||
$B9V1i(J $B;~9o(J | $B9V1i(J $BHV9f(J | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(J | $BJ,N`(J | $BHV9f(J $B | |
$B%7%s%]%8%&%`(J <$B%P%$%*4XO":G@hC | |||||
(9:00$B!A(J11:00) ($B:BD9(J $BKY(J $B9nIR!&@PED(J $BOK9-(J) | |||||
G101 | [$B>7BT9V1i(J] $B5!G=@-%?%s%Q%/ | Protein assembly avidin-biotin interaction DNA-enzyme conjugate | S-11 | 70 | |
G103 | [$B>7BT9V1i(J] $B%O%$%V%j%C%I%J%N%;%k%m%=!<%`(J:$B%J%N%b%8%e!<%k%i%$%V%i%j!<$+$i$N5!G=AG;R@_7W(J | cellulase molecular evolution nanobio | S-11 | 264 | |
G105 | [$B>7BT9V1i(J] $BBQG.@-9ZAG%b%8%e!<%k$K$h$k(JIn vitro $BBe | in vitro metabolic engineering thermostable enzyme on-demand bioprocess | S-11 | 63 | |
(11:00$B!A(J12:00) ($B;J2q(J $BKY(J $B9nIR(J) | |||||
G107 | [$BE8K>9V1i(J] $B?7$?$JD)@o(J:$B%$%N%Y!<%F%#%V!&%P%$%*%W%m%@%/%7%g%s(J | Biomass Biorefinery Biofuel | S-11 | 47 | |
(13:00$B!A(J15:00) ($B:BD9(J $BCSED(J $B:K!&8E@n(J $B??Li(J) | |||||
G113 | [$B>7BT9V1i(J] $B%P%$%*%j%U%!%$%J%j!<$rL\;X$7$?%$%*%s1UBN$N3hMQ(J | ionic liquid cellulosic ethanol yeast | S-11 | 770 | |
G115 | [$B>7BT9V1i(J] $B0dEA;RAH49$(Hy@8J*$rMQ$$$?%$%=%W%m%Q%N!<%k@8;:(J | iso-propanol engineered microorganism | S-11 | 88 | |
G117 | [$B>7BT9V1i(J] $B9bIJ | high quality biodiesel continuous production reaction and separation | S-11 | 329 | |
(15:00$B!A(J17:00) ($B:BD9(J $B?@C+(J $BE5Jf!&>.@>(J $B0l@?(J) | |||||
G119 | [$B>7BT9V1i(J] $BGQ?e=hM}5;=Q$X$N(JQuorum Sensing$B@)8f | quorum sensing wastewater treatment activated sludge | S-11 | 456 | |
G121 | [$B>7BT9V1i(J] Membranome$B$K4p$E$/3W?7E*%P%$%*%F%/%N%m%8!<(J | Membranome Liposome Bio-Inspired Chemical Engineering | S-11 | 484 | |
G123 | [$B>7BT9V1i(J] $B%P%/%F%j%*%J%N%U%!%$%P! | Interfacial microbial process bacterionanofiber immobilization | S-11 | 29 | |
H $B2q>l(J | |||||
$B9V1i(J $B;~9o(J | $B9V1i(J $BHV9f(J | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(J | $BJ,N`(J | $BHV9f(J $B | |
$B%7%s%]%8%&%`(J <$B;q8;!&%(%M%k%.! | |||||
(9:00$B!A(J10:00) ($B:BD9(J $BJ!86(J $BD9 | |||||
H101 | $B4I7?H?1~4o$rMQ$$$?%a%A%k%7%/%m%X%-%5%sC&?eAG$NH?1~B.EY2r@O(J | Dehydrogenation Methylcyclohexane Kinetic analysis | S-28 | 523 | |
H102 | $B?(G^0lBN2=%b%8%e!<%k$NBQ5W@-8!>Z(J | Membrance reformer Hydrogen production PdAg membrane | S-28 | 632 | |
H103 | $B%Q%i%8%&%`?(G^$K$h$k%W%m%T%*%s;@%a%A%k$N9g@.(J | methyl propionate propionaldehyde palladium | S-28 | 321 | |
(10:00$B!A(J11:20) ($B:BD9(J $B4_ED(J $B>;9@!&0f>e(J $BJ~Li(J) | |||||
H104 | $BD69b??6u=hM}$r$7$?(JPd/SiO2$B>e$G$N%W%m%T%l%s$N?eAG2=H?1~(J | propylene Hydrogenation Ultrahigh Vacuum | S-28 | 647 | |
H105 | $B%]%j%H%j%a%A%l%s%F%l%U%?%l!<%H=E9g%W%m%;%9$K$*$1$k?(G^NLDc8:$K4X$9$k8!F$(J | Polytrimethylene terephthalate Bio plastic 1,3-Propanediol | S-28 | 362 | |
H106 | $BC4;}(JPt$B?(G^>e$G$N%7%s%J%`%"%k%G%R%IA*Br?eAG2=H?1~$K$*$1$k(JFe$BE:2C8z2L(J | Fe deposited Pt/SiO2 Cinnamaldehyde Selective Hydrogenation | S-28 | 865 | |
H107 | $B%*%>%s$rMQ$$$?(Jp-$B%-%7%l%s$N;@2=(J | ozone p-Xylene oxidation | S-28 | 300 | |
$B%7%s%]%8%&%`(J <$BH?1~9)3XIt2q(J $B%]%9%?!<%;%C%7%g%s(J> | |||||
(11:20$B!A(J12:00) ($B:BD9(J $B6a9>(J $BLwB'!&KY9>(J $B9';K(J) | |||||
H108 | $B%O%K%+%`7?(JNi$B7O9=B$BN?(G^$K$h$kLO5<%P%$%*%^%9%?!<%k$H$7$F$N%J%U%?%l%s$N?e>x5$2~ | Structured catalyst Naphthalene steam reforming Biomass tar | S-29 | 62 | |
=H108 | $BG.J,2r%P%$%*%,%9$r86NA$H$7$?8zN(E*?eAG@=B$(J | biomass hydrogen palladium membrane | S-29 | 346 | |
==H108 | $BC&N2EtL}$N?e>x5$2~ | membrane reactor steam reforming kerosene | S-29 | 918 | |
===H108 | CO2$B$N9bB.%a%?%s2=MQ(JNi$B7O9=B$BN?(G^$K$*$1$k=u?(G^$NE:2C8z2L(J | Structured catalyst Methanation Carbon dioxide | S-28 | 61 | |
====H108 | CO2$BMO2rKDD%1UAj$rMQ$$$?%8%K%H%m%"%K%j%s$NA*BrE*?eAG2=H?1~(J | dense phase CO2 selective hydrogenation FTIR | S-29 | 171 | |
=====H108 | $BCbAG%I!<%WC:AG$N1v4p?(G^@-G=$KBP$9$kD4@=>r7o$N1F6A(J | Catalyst preparation Knoevenagel condensation Ammoxidation | S-28 | 325 | |
======H108 | $B%Q%i%8%&%`C4;}$*$h$S%+%?%i!<%<8GDjA!0]$rMQ$$$?D6=c?eCf$N2a;@2=?eAGJ,2r(J | hydrogen peroxide decomposition palladium-impregnated fiber catalase-immobilized fiber | S-29 | 333 | |
=======H108 | $B%U%#%k%`>u8GDj2=%&%l%"!<%(G^$N9g@.$HO"B3N.DL<0H?1~%7%9%F%`$rMQ$$$?G"AG$N2C?eJ,2rH?1~I>2A(J | immobilized enzyme film-type catalyst continuous flow reactor | S-29 | 363 | |
H109 | $B9b29C&?eAGH?1~2<$K$*$1$kC:AGC4;}(JPd$B?(G^$NNt2=5sF0$H%7%j%+HoJ$8z2L(J | silica coating sintering dehydrogenation | S-29 | 378 | |
=H109 | $B6bB0%$%*%sE:2C$,E7A3?'AG$N2~ | Natural pigment Flavonoid Antioxidant potential | S-29 | 519 | |
==H109 | $B8GBN;@2=J*G3NAEECS7AH?1~4o$K$*$1$k6u5$6K?(G^(JLa1-xSrxMnO3$B$NAH@.Hf$N1F6A(J | Fuel cell reactor Partial oxidation LSM | S-29 | 930 | |
===H109 | $B%7%/%m%X%-%5%sC&?eAGMQB?4I<0%a%s%V%l%s%j%"%/%?!<$K$*$1$kKlJ]8n4I$N1F6A(J | membrane reactor protection pipe cyclohexane dehydrogenation | S-29 | 416 | |
====H109 | $B%a%s%V%l%s%j%"%/%?!<$rMQ$$$?%"%s%b%K%"J,2r$K$*$1$kH?1~G.$N1F6A(J | ammonia decomposition membrane reactor | S-29 | 672 | |
=====H109 | $B=[4DN.O)$rMxMQ$7$?%^%$%/%mN.O)Fb5$1UFsAjN.$K$*$1$k%,%95[<}B.EY$N2r@O(J | gas-liquid flow gas absorption microchannnel | S-29 | 789 | |
======H109 | $B%^%$%/%mGH%P%V%k%W%i%:%^$K$h$k%j%0%K%s%b%G%kJ,;R$NH?1~(J | Plasma Biomass Lignin | S-29 | 305 | |
=======H109 | $B%^%$%/%mGH%P%V%k%W%i%:%^$K$h$j@8@.$9$k(JOH$B%i%8%+%k$NH?1~(J | plasma hydroxyl radical terephthalic acid | S-29 | 312 | |
========H109 | $BD62;GH$rMQ$$$?%3%]%j%^!<$N9g@.$K$*$1$kH?1~B.EY$*$h$SJ,;RNL$K5Z$\$9=t0x;R$N1F6A(J | ultrasound polymerization copolymer | S-29 | 370 | |
=========H109 | $B%J%NIC%@%V%k%Q%k%9%l!<%6!<>H | spherical particle double pulsed laser particle size | S-29 | 331 | |
(14:40$B!A(J15:40) ($B:BD9(J $BHx>e(J $B70(J) | |||||
H118 | [$BM%=(O@J8>^(J] $B | FCC catalyst deactivation | S-28 | 12 | |
H119 | [$B>7BT9V1i(J] $BH?1~%W%m%;%9$N3W?7$N$?$a$KH?1~9)3X$,2L$?$9$Y$-Lr3d(J | Reaction process Process intensification Reaction engineering | S-28 | 205 | |
(15:40$B!A(J16:20) ($B;J2q(J $B0BED(J $B7<;J(J) | |||||
H121 | [$B>7BT9V1i(J] $B%=%N%1%_%+%k(J $B%(%s%8%K%"%j%s%0(J $B%W%m%;%9$N8zN(2=(J | Sonochemical engineering process ultrasound chemical and physical effects | S-28 | 364 | |
(16:20$B!A(J17:00) ($B;J2q(J $BE{0f(J $B=SM:(J) | |||||
H123 | [$BE8K>9V1i(J] $B>&6H2=$r8+?x$($?%0%j!<%s%$%N%Y!<%7%g%s5;=Q3+H/(J | Green Inovation | S-28 | 691 | |
(17:00$B!A(J18:00) ($B:BD9(J $B?y;3(J $BLP!&@F4V(J $BEy(J) | |||||
H125 | $B%RAG2=9gJ*$N8w;@2=$N$?$a$NG.E*$K0BDj$J(JTi-W$BJ#9g8w?(G^$N9g@.(J | Photooxidation Ionic liquid Tungsten trioxide | S-28 | 165 | |
H126 | $BM[%$%*%s8r49 | Biodiesel fuel Free fatty acid Reaction rate | S-28 | 531 | |
H127 | Rice Husk$BG.J,2rL}$N<}N($K5Z$\$986NA4^?eN($N8z2L(J | rice husk pyrolysis mositure | S-28 | 432 | |
I $B2q>l(J | |||||
$B9V1i(J $B;~9o(J | $B9V1i(J $BHV9f(J | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(J | $BJ,N`(J | $BHV9f(J $B | |
$B%7%s%]%8%&%`(J <$B%(%l%/%H%m%K%/%9:`NA$H%W%m%;%9(J> | |||||
(10:00$B!A(J11:00) ($B:BD9(J $B6aF#(J $BOBIW!&7/DM(J $BN<0l(J) | |||||
I104 | $BF<7jKd$a$a$C$-$K$*$1$k%8%"%j%k%"%_%s7O%l%Y%i!<$N1F6A(J | electrodeposition leveler copper | S-17 | 282 | |
I105 | $B9b%"%9%Z%/%HHf(JTSV$B$N%7!<%IKl$N:n@=(J | High Aspect Ratio Cu seed TSV | S-17 | 726 | |
I106 | $BEE5$F<$a$C$-$K$h$j:n@.$7$?(JTSV$BG[@~$NG.@~KDD%78?tDc8:(J | TSV Copper thermal expansion coeffcient | S-17 | 565 | |
(11:00$B!A(J12:00) ($B:BD9(J $BsnF#(J $B>f{J!&BgDM(J $BK.82(J) | |||||
I107 | $B0l2AF<$HF<%@%^%7%s$a$C$-$NB%?J:^(J | Copper Electrodeposition Cuprous | S-17 | 571 | |
I108 | $B6bB0F | primary battery metalic-copper anode positive electrode | S-17 | 862 | |
I109 | $B= | iron-air cell rate of electrode reaction rate of mass transfer | S-17 | 459 | |
(13:00$B!A(J14:00) ($B:BD9(J $B4]Cf(J $B@5M:!&Bm(J $B7rB@O:(J) | |||||
I113 | [$B>7BT9V1i(J] $B;0F3BN$N:#8e$N1~MQE83+(J | three dimension semiconductor | S-17 | 3 | |
I115 | PR$B%Q%k%9EEN.$K$h$C$F@8@.$5$l$k%S%"FbIt$N(JCu+$BG;EYJ,I[%7%_%e%l!<%7%g%s(J | Copper electrodeposition reverse current cuprous ion concentration | S-17 | 297 | |
(14:00$B!A(J14:40) ($B:BD9(J $B2.Ln(J $BJ84]!&2,K\(J $B>0 | |||||
I116 | $BEE5$(JSn$B$a$C$-$K$h$k(JLi$B%$%*%sFs | lithium-ion cells Sn electrodeposition | S-17 | 79 | |
I117 | $BEE5$(JCu-Sn$B$a$C$-$K$h$k(JLi$B%$%*%sFs | lithium-ion secondary batteries Cu-Sn electrodeposition | S-17 | 81 | |
$B5Y7F(J | |||||
(15:00$B!A(J16:00) ($B:BD9(J $B=);3(J $BBY?-!&2,K\(J $B>0 | |||||
I119 | [$B>7BT9V1i(J] Na$B%$%*%sC_EECS$N8&5fF08~$HEENOCyB"5;=Q$X$N4|BT(J | Na battery | S-17 | 2 | |
I121 | Sn$B$a$C$-Ii6K:`$N9=B$@)8f$K$h$k%J%H%j%&%`%$%*%sEECS$N%5%$%/%kFC@-I>2A(J | Na-ion battery Tin electrodeposition | S-17 | 382 | |
J $B2q>l(J | |||||
$B9V1i(J $B;~9o(J | $B9V1i(J $BHV9f(J | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(J | $BJ,N`(J | $BHV9f(J $B | |
$B%7%s%]%8%&%`(J <$B | |||||
(10:00$B!A(J11:00) ($B:BD9(J $B5FCO(J $BN4;J!&DE5W0f(J $BLP | |||||
J104 | $BB@M[EECS$X$N1~MQ$K8~$1$?%]!<%i%9(JSi/$B6bB0%J%NN3;RJ#9g:`NA$N%_%/%m(J/$B%J%N9=B$@)8f(J | Metal nanoparticle Micro/nano structure Si solar cell | S-4 | 972 | |
J105 | P3HT/ICBA$BM-5!B@M[EECS$NH/EEFC@-$H;@2=%A%?%sKl$N7k>=@-$H$N4X78(J | Titanium Oxide organic solar cell crystallinity | S-4 | 979 | |
J106 | Sb2S3$BA}46H>F3BNB@M[EECS$K$*$1$k8wA}46:`$NHy:Y9=B$$HH/EEFC@-$N4X78(J | solar cell Sb2S3 heterojunciton | S-4 | 995 | |
(11:00$B!A(J12:00) ($B;J2q(J $BDE5W0f(J $BLP | |||||
J107 | [$B>7BT9V1i(J] $BB@M[EECS$rCf?4$H$7$?%(%M%k%.!<$K4X$9$k3+H/$N8=>u$HE8K>(J | Solar Cell Smart Grid Mega Solar Power Plant | S-4 | 924 | |
(13:00$B!A(J14:00) ($B:BD9(J $BDT8}(J $BBsLi!&ED4,(J $B9'7I(J) | |||||
J113 | $B%5!<%b%0%i%U%#!]$N2rL@(J | PEFC In-plane Temperature Distribution Coupling Phenomena | S-4 | 214 | |
J114 | $B8GBN9bJ,;R7AG3NAEECS$N1?E>>r7o$,KlFb?eM"Aw$KM?$($k1F6A(J | PEFC water transport NWTC | S-4 | 136 | |
J115 | $B%5!<%b%0%i%U%#!<$G | PEFC Heat Transfer Model Temperature Distribution Analysis | S-4 | 211 | |
(14:00$B!A(J15:00) ($B:BD9(J $BED4,(J $B9'7I!&DT8}(J $BBsLi(J) | |||||
J116 | $B%+!<%\%sEE6K:`NA$NM-8zEE;REAF3EY$HB?9&9=B$$NAj4X(J | PEFC Micro porous layer electrical conductivity | S-4 | 994 | |
J117 | PEFC$B$N%+%=!<%I?(G^AX$K$*$1$k;@AG4T85H?1~$N2r@O(J | PEFC oxygen reduction reaction kinetics | S-4 | 907 | |
J118 | $B8GBN9bJ,;R7AG3NAEECS$N(Jthrough-plane$BKlEAF3EYB,DjK!$N3NN)(J | ion exchange membranes through-plane measurement conductivity | S-4 | 260 | |
(15:00$B!A(J16:00) ($B:BD9(J $B5WJ]ED(J $B=c!&J!D9(J $BGn(J) | |||||
J119 | $B%+!<%\%sC4BN6E=89=B$$r%3%"$H$7$?(JPEFC$B%+%=!<%I?(G^AX$N3+H/(J | PEFC catalyst layer ionomer | S-4 | 971 | |
J120 | FePt$BB?9&@-%J%N%+%W%;%k$rMQ$$$?8GBN9bJ,;R7AG3NAEECS$NEE6K?(G^3+H/(J | PEFC FePt nanocapsules electrocatalyst | S-4 | 591 | |
J121 | $B8GBN9bJ,;R7AG3NAEECSMQ%+!<%\%s%V%i%C%/C4;}(JV-Mo$B;@2=J*7O%+%=!<%I?(G^$N;@AG4T853h@-(J | PEFC oxygen reduction reaction non-platinum catalysts | S-4 | 510 | |
(16:00$B!A(J16:40) ($B:BD9(J $BJ!D9(J $BGn!&BgM'(J $B=g0lO:(J) | |||||
J122 | The oxygen reduction reaction of well-dispersed TaOx nanoparticles on carbon black for PEFC applications. | PEFCs Oxygen reduction reaction tantalum oxide | S-4 | 515 | |
J123 | PEFC$B%+%=!<%I?(G^$H$7$F$N%K%*%V%I!<%W;@2=%A%?%s$N;@AG4T853h@-(J | PEFC Oxygen reduction reaction niobium doped titanium oxide71 | S-4 | 938 | |
K $B2q>l(J | |||||
$B9V1i(J $B;~9o(J | $B9V1i(J $BHV9f(J | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(J | $BJ,N`(J | $BHV9f(J $B | |
$B%7%s%]%8%&%`(J <$BG.9)3X%7%s%]%8%&%`(J> | |||||
(11:00$B!A(J12:00) ($B:BD9(J $BD+7'(J $BM52p(J) | |||||
K107 | $BHy>.=ENO2<$K$*$1$k(JTLZ$BK!$K$h$k(JSiGe$BC17k>=@.D9%W%m%;%9$N?tCM%7%_%e%l!<%7%g%s(J | SiGe crystal growth Traveling liquidus-zone method Numerical simulation | S-48 | 443 | |
K108 | $BEEN.(J-$B<'>l0u2C$,(JCz$BK!M;1UB.EYJQF0$K5Z$\$91F6A$K4X$9$k8&5f(J | Czochralski method electromagnetic field Lorentz force | S-48 | 301 | |
K109 | $B2sE><'>l0u2C$,(JCz$BK!M;1UB.EYJQF0$K5Z$\$91F6A$K4X$9$k8&5f(J | Czochralski method Rotational magnetic field Ultrasonic Velocity Profiler | S-48 | 316 | |
(13:00$B!A(J14:00) ($B:BD9(J $Bc7F#(J $BBYMN(J) | |||||
K113 | [$BE8K>9V1i(J] $B@=A-J,Ln$K$*$1$k;q8;BP1~NO6/2=5;=Q$N8&5f$H3+H/(J | cokemaking ironmaking coal | S-48 | 67 | |
K115 | [$BM%=(O@J8>^(J] Marangoni Flows in Polymer Solution Droplets Drying on Heating Surfaces | Free Convection Drying Inkjet | S-48 | 33 | |
(14:00$B!A(J15:00) ($B:BD9(J $B>.NS(J $B?.2p(J) | |||||
K116 | $B9bB.2sE>%Y%k%+%C%WEIAu5!$K$*$1$kJ.L8N3;R7B$,EICe8zN($K5Z$\$91F6A$N8!F$(J | Rotary bell cup atomizer Transfer efficiency Computational fluid dynamics | S-48 | 933 | |
K117 | v2-f$B%b%G%k$K$h$kHy:Y%_%9%HNd5Q$NJ.L8N.2r@O(J | Fine mist cooling Two-phase flow High heat flux | S-48 | 106 | |
K118 | $B5[<}<0NdE`5!=-2=%j%A%&%`?eMO1U$K$*$1$k%^%i%s%4%KBPN.4Q;!(J | Marangoni absorption surfactant | S-48 | 167 | |
(15:00$B!A(J16:00) ($B:BD9(J $BCfA>(J $B9@0l(J) | |||||
K119 | $B@E;_1UKl7A>u$N1F6A$r9MN8$7$?1_7A1UKlFb29EY:9%^%i%s%4%KBPN.$K4X$9$k?tCM2r@O(J | Marangoni effect Numerical simulation | S-48 | 203 | |
K120 | $B%Y%s%<%s(J-$B%"%;%A%l%s:.9g86NA$+$i@8@.$7$?%+!<%\%s%J%NN3;R$N6E=8BN7A>u$K4X$9$k9M;!(J | Carbon black Soot Detailed chemical kinetic reaction | S-48 | 867 | |
K121 | $BC:2=?eAGJ,2rH?1~$KH<$&%3!<%/@8@.$K$*$1$k2=3X | detailed kinetic mechanism numerical simulation pyrolysis | S-48 | 962 | |
(16:00$B!A(J16:40) ($B:BD9(J $B?y2,(J $B7r0l(J) | |||||
K122 | Surface tension profiles under various microwave radiation modes | microwave surface tension | S-48 | 44 | |
K123 | $B<'5$G.NL8z2L$rE,MQ$7$?<+8JG.:F@8%7%9%F%`$N | self-heat recuperation exergy magnetocaloric effect | S-48 | 630 | |
(16:40$B!A(J17:40) ($B:BD9(J $B@n>e(J $BM}N<(J) | |||||
K124 | $BB@M[8wH/EE$H0\F05!4o$rAH$_9g$o$;$?J#9g%(%M%k%.!<%7%9%F%`(J | Smart Community Photovoltaic Power Generation Electric Industrial Vehicle | S-48 | 593 | |
K125 | $BL$MxMQ29GQ?e$h$j9b296u5$$r@8@.$9$k=-2=%j%A%&%`! | Absorption heat pump system System producing hot air Non-code pressure vessel | S-48 | 816 | |
K126 | $B2 | sludge drying compost | S-48 | 57 | |
L $B2q>l(J | |||||
$B9V1i(J $B;~9o(J | $B9V1i(J $BHV9f(J | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(J | $BJ,N`(J | $BHV9f(J $B | |
-$BCK=w6&F1;22h0Q0w2q9V1i2q(J- | |||||
$BCK=w6&F1;22h0Q0w2q9V1i2q(J | |||||
M $B2q>l(J | |||||
$B9V1i(J $B;~9o(J | $B9V1i(J $BHV9f(J | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(J | $BJ,N`(J | $BHV9f(J $B | |
$B%7%s%]%8%&%`(J <$B>J%(%M%k%.!<>xN1%W%m%;%9$N | |||||
(10:00$B!A(J11:00) ($B:BD9(J $B>>ED(J $B7=8g!&NkLZ(J $BBYI'(J) | |||||
M104 | $B1v8z2L$rMxMQ$7$?>J%(%M>xN1%W%m%;%9$N8!F$(J | energy saving distillation salt effect | S-41 | 912 | |
M105 | $B>xN1!?KlJ#9g%W%m%;%9$NJ,N%FC@-$N2rL@$HKl@-G=$N1F6A(J | Hybrid distillation process Membrane separation Vapor permeation | S-41 | 747 | |
M106 | $B>J%(%M%k%.!<>xN1%W%m%;%9$NI,MWM}O@CJ?t(J | modified Petlyuk process DWC energy saving | S-41 | 236 | |
(11:00$B!A(J12:00) ($B:BD9(J $B?9(J $B=( | |||||
M107 | $BEcJ,3d7?>xN1Ec$N%@%$%J%_%C%/%7%_%e%l!<%7%g%s(J | Dividing wall column Process dynamics Operability | S-41 | 298 | |
M108 | $B%P%$%*%(%?%N!<%kG;=L$N$?$a$NI8=`7?(JHIDiC$B%Y%s%A%W%i%s%H$K$h$kZ8&5f(J | Bio-ethanol HIDiC distillation Energy saving | S-41 | 14 | |
M109 | $B%P%$%*%(%?%N!<%kG;=L$N$?$a$N05=L5!ITMW$N(JHIDiC$B%Y%s%A%W%i%s%H$K$h$kZ8&5f(J | Bio-ethanol HIDiC distillation Energy saving | S-41 | 15 | |
$B%7%s%]%8%&%`(J <$B%P%C%A<0FbItG.8r497?>xN1%7%s%]%8%&%`!!!c0lHL8xJg$;$:!d(J> | |||||
(13:00$B!A(J13:40) ($B;J2q(J $BNkLZ(J $BBYI'(J) | |||||
M113 | [$BE8K>9V1i(J] $B%W%m%;%9%$%s%F%0%l!<%7%g%s$K$h$k>xN1J,N%%W%m%;%9$N?<2=(J | Distillation Integration Energy-saving | S-42 | 243 | |
(13:40$B!A(J15:00) ($B:BD9(J $B>>ED(J $B7=8g(J) | |||||
M115 | [$BE8K>9V1i(J] $BFbItG.8r497?%P%C%A>xN1Ec$N | Batch distillation Heat-integration Energy saving | S-42 | 283 | |
M117 | [$BE8K>9V1i(J] $B%P%C%A%W%m%;%9$rBP>]$H$7$?>xN1(J-$B5[Ce%O%$%V%j%C%I%7%9%F%`(J | adsorption batch distillation hybrid | S-42 | 806 | |
(15:00$B!A(J15:40) ($B;J2q(J $B1sF#(J $BL@(J) | |||||
M119 | [$B>7BT9V1i(J] $B>xN1(J-$BJ,N%Kl$N%O%$%V%j%C%I2=$K$h$k>J%(%M%k%.!<5;=Q$N3+H/(J | membrane energy saving separation | S-42 | 813 | |
N $B2q>l(J | |||||
$B9V1i(J $B;~9o(J | $B9V1i(J $BHV9f(J | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(J | $BJ,N`(J | $BHV9f(J $B | |
$B%7%s%]%8%&%`(J <$BJ,N%%W%m%;%9It2q%7%s%]%8%&%`(J> | |||||
(9:00$B!A(J10:20) ($B:BD9(J $B30NX(J $B7r0lO:!&F#_7(J $B>4Mx(J) | |||||
N101 | $BDc29EY0h$G:nF02DG=$J4%<0C&N2%U%#%k%?!<$NAuCV@_7W$K4X$9$k8&5f(J | DeSOx filter dry desulfurization manganese oxide | S-44 | 556 | |
N102 | $B>x5$C&Ce7?(JTSA$B%W%m%;%9$K$h$k(JCO2$BJ,N%$N2DG=@-8!F$(J | CO2 Separate TSA Steam Regeneration | S-44 | 624 | |
N103 | $B%]%j%"%_%s4^?;C4;}%a%=%]!<%i%9%7%j%+$N(JCO2$B5[CeFC@-(J | Adsorption Carbon Dioxide Polyamine | S-44 | 465 | |
N104 | $B%"%_%s7O5[<}1U$N(JCO2$B5[<}B.EY%Q%i%a!<%?$N7hDj(J | $B2=3X5[<}K!(J $B%"%_%s(J $BH?1~B.EYDj?t(J | S-44 | 386 | |
(10:20$B!A(J11:40) ($B:BD9(J $B;y6L(J $B> | |||||
N105 | $B:.9g%"%k%+%j?e;@2=J*MOM;1v$rMQ$$$?;HMQ:QC&>K?(G^$+$i$N%?%s%0%9%F%s!"%P%J%8%&%`$NDc29Cj=P(J | tungsten extraction vanadium extraction De-NOx catalyst | S-44 | 244 | |
N106 | $B?eAG5[B"9g6b$rMQ$$$??eAG@:@=$N | metal hydride hydrogen purification simulation | S-44 | 580 | |
N107 | $BN.F0AX>xH/4o$rMQ$$$?<+8JG.:F@87?3$?eC8?e2=%W%m%;%9$N3+H/(J | self-heat recuperation desalination process design | S-44 | 616 | |
N108 | Effect of internal heat integration in optimal distillation structures ($BFAEgBg(JSTS$B8&(J) $B!{(J($B3$(J)$B%"%k%+%s%?%i%"%S%i(J $B%X!<%9%9%i%U%!%(%k!&(J | Heat Integration Distillation Optimization | S-44 | 650 | |
$B%7%s%]%8%&%`(J <$BCj=P!&%$%*%s8r49!&5[Ce$N?7E83+(J> | |||||
(13:00$B!A(J14:00) ($B:BD9(J $B$O$P$-(J $B9-82(J) | |||||
N113 | $BN3>u5[Ce:`$N(JVOC$B5[C&Ce@-G=I>2AK!(J | absorption N-methylpyrrolidinone Simulator | S-43 | 121 | |
N114 | $B3h@-C:A!0]$H9u1t2=%+!<%\%s%V%i%C%/$X$N?e>x5$5[Ce$N29EY0MB8@-(J | water vapor adsorption activated carbon fiber temperature dependence | S-43 | 511 | |
N115 | $B%P%$%*%^%9C:2=J*$rMQ$$$?N22=?eAG=|5n(J | H2S carbide hydrogen sulfide | S-43 | 707 | |
(14:00$B!A(J15:00) ($B:BD9(J $BKY2O(J $B=S1Q(J) | |||||
N116 | $BLZ | hexacyanoferrate($B-6(J) wood chip Cs adsorption | S-43 | 453 | |
N117 | $B$5$^$6$^$J;@2=3h@-C:$K$h$k?eMO1UCf$N(JNi$B%$%*%s$N5[Ce=|5n(J | adsorption activated carbon nickel | S-43 | 251 | |
N118 | $B=c@.J,5[Ce%G!<%?$rMQ$$$?3h@-C:$KBP$9$kD6NW3&(JCO2-VOC$B:.9g7O5[CeJ?9U$N9b@:EY?d;;%b%G%k3+H/(J | Supercritical carbon dioxide Adsorption Activated carbon | S-43 | 400 | |
(15:00$B!A(J16:00) ($B:BD9(J $B;3K\(J $B9@5.(J) | |||||
N119 | $BCj=P:^$r8GDj2=$7$?4629@-9bJ,;R$rMxMQ$7$?4D6-D4OB7?5[Ce%7%9%F%`$N3+H/(J | Adsorption Metal Ion PNIPAM | S-43 | 352 | |
N120 | $B%j%s;@7O41G=4p$rM-$9$k;05S>uJ,;R$K$h$k4uEZN`$NCj=P(J | Extraction Trident molecule Rare earths | S-43 | 267 | |
N121 | $B%"%_%I$*$h$S%&%l%"7?;05S>uJ,;RCj=P;nLt$rMQ$$$?5.6bB0%$%*%s$NCj=PFC@-I>2A(J | precious metal trident molecule preorganized effect | S-43 | 640 | |
(16:00$B!A(J17:00) ($B:BD9(J $BBgEO(J $B7<2p(J) | |||||
N122 | $BD62;GH$rMxMQ$7$?%8%A%*%+%k%P%a!<%H7OMOG^Cj=P%W%m%;%9$N3+H/(J | ultrasonic wave solvent extraction dithiocarbamate | S-43 | 815 | |
N123 | $BB?:BJq@\7?G[0L;R$r4^M-$9$k4629@-%2%k$K$h$k(JAm/Eu $BJ,N%(J ----$B%2%k$N(JAm/Eu$BCj=PJ,N%$HCj=P5!9=(J--- | Thermosensitive Gel Extraction Mechanism XAFS | S-43 | 1010 | |
N124 | $BB?:BJq@\7?G[0L;R$r4^M-$9$k4629@-%2%k$K$h$k(JAm/Eu $BJ,N%(J----- $BB?9& | Extraction Chromatography Thermosensitive Gel Porous Silica | S-43 | 1012 | |
O $B2q>l(J | |||||
$B9V1i(J $B;~9o(J | $B9V1i(J $BHV9f(J | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(J | $BJ,N`(J | $BHV9f(J $B | |
$B%7%s%]%8%&%`(J <$BN3;R!&N.BN7OJ,N%%W%m%;%9$N:G?7F08~(J> | |||||
(10:00$B!A(J11:20) ($B:BD9(J $BCfAR(J $B1QM:!&6aF#(J $B@65W(J) | |||||
O104 | $B%^%$%/%m%P%V%k%\%G%#!<%U%#!<%I%9%i%j!<$N%G%C%I%(%s%I_I2a(J | dead-end filtration microbubble detachment | S-39 | 772 | |
O105 | $BJ4BN%7%_%e%l!<%7%g%s$K$h$kHyN3;R$m2aFC@-$K5Z$\$9N3;R4VAj8_:nMQNO$N1F6A$K4X$9$k8!F$(J | Microfiltration Interparticle interaction force Powder simulation | S-39 | 558 | |
O106 | $B7y5$3h@-1xE%$NKl_I2aFC@-$K5Z$\$9GQ?eAH@.$N1F6A(J | membrane filtration anaerobic activated sludge wastewater composition | S-39 | 757 | |
O107 | $B@:L)_I2a;n83$K4p$E$/Hy@8J*%1!<%/$N05=LF)2aFC@-$NI>2A(J | microfiltration microbial cake compression-permeability characteristics | S-39 | 751 | |
(11:20$B!A(J12:00) ($B;J2q(J $BJR6M(J $B@?G7(J) | |||||
O108 | [$BE8K>9V1i(J] $B%S!<%k>zB$$K$*$1$k8G1UJ,N%%W%m%;%9(J | filtration beer brewing | S-39 | 564 | |
(13:00$B!A(J13:40) ($B;J2q(J $BF~C+(J $B1Q;J(J) | |||||
O113 | [$BE8K>9V1i(J] $B:G6a$N<><0J,5i$K4X$9$k?7E83+(J | wet classification zeta-potential hydro-cyclone | S-39 | 53 | |
(13:40$B!A(J15:00) ($B:BD9(J $B8~0f(J $B9/?M!&3Q20(J $B@5?M(J) | |||||
O115 | $BEE5$1KF0$rMxMQ$7$?O"B3<0J,5iAuCV$NFC@-(J | Classification Zeta potential Electrophoresis | S-39 | 617 | |
O116 | $BJ.N.>l$rMQ$$$??75,<><0J,5iAuCV$N3+H/(J | wet separator jet flow density difference | S-39 | 866 | |
O117 | $B%(%^%k%7%g%s%9%i%j!<$N1s?4Ib>eD@9_J,N%FC@-$NI>2A(J | centrifugation flotation sedimentation | S-39 | 731 | |
O118 | $BJB9TJ?Kl7?1s?4%;%k$K$h$k9bJ,;RMO1U$N==;zN.1s?48B30_I2aFC@-(J | centrifugal ultrafiltration blue dextran cross-flow filtration | S-39 | 196 | |
(15:00$B!A(J16:40) ($B:BD9(J $B@n:j(J $B7rFs!&5HED(J $BM'0l(J) | |||||
O119 | $B%U%_%s;@MO1U$NDj058B30_I2aFC@-$K5Z$\$9%+%k%7%&%`%$%*%sE:2C$N1F6A(J | humic acid calcium ion ultrafiltration | S-39 | 232 | |
O120 | $B_I2aLL@Q5^=L>.$HJQ05JQB._I2a$rM;9g$5$;$?8B30_I2a%1!<%/$NFC@-I>2A(J | ultrafiltration specific cake resistance porosity | S-39 | 773 | |
O121 | $BN37B$N0[$J$k(J2$B@.J,7O%9%i%j!<$NDj05!&DjB.@:L)_I2a$K$*$1$k%1!<%/@.D9$HJD:I(J | microfiltration cake blocking | S-39 | 742 | |
O122 | $B%J%N%U%!%$%P! | nanofiber nonwoven cloth carbon nanoparticle adsorption | S-39 | 478 | |
O123 | $BJ| | Soil washing Irradiation contamination Reclamation | S-39 | 110 | |
P $B2q>l(J | |||||
$B9V1i(J $B;~9o(J | $B9V1i(J $BHV9f(J | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(J | $BJ,N`(J | $BHV9f(J $B | |
$B%7%s%]%8%&%`(J <$BKl9)3X$K4X$9$k8&5f!&3+H/$K$*$1$k?7E83+(J> | |||||
(9:20$B!A(J11:20) ($B:BD9(J $B5H2,(J $BJ~5W!&LnB<(J $B4490(J) | |||||
P102 | $B%7%j%+7O5U?;F)Kl$N3+H/(J | Silica membrane RO separation counter diffusion CVD method | S-40 | 99 | |
P103 | $BCf6u;e(JForward Osmosis(FO)$BKl$N | Forward Osmosis Hollow Fiber membrane | S-40 | 890 | |
P104 | $B%"%k%.%s;@9bJ,;RKl$N=c?eF)2aFC@-$H2M66%M%C%H%o!<%/7A@.$KBP$9$k6bB0%$%*%s$N4sM?(J | Alginate membrane Metal ion Water permeability | S-40 | 521 | |
P105 | $B%+%k%\%-%7%a%A%k%Y%?%$%s%]%j%^!<$N?eOB>uBV$K1v$,M?$($k1F6A(J | fouling betaine polymer water structure | S-40 | 440 | |
P106 | Si-OH$B4pL)EY$r@)8f$7$?(JSiO2$BKl$N?eAGF)2aFC@-$HBQ?e>x5$@-(J | silica membrane silanol groups hydrogen separation | S-40 | 545 | |
P107 | $B%J%N%U%!%$%P!<%"%k%_%J%>%k$rMQ$$$?B?9& | boehmite nanofiber Sselective water separation slit-like pore | S-40 | 551 | |
(11:20$B!A(J12:00) ($B:BD9(J $B@V>>(J $B7{ | |||||
P108 | $B@5?;F)%W%m%;%9$rMxMQ$7$?%i%F%C%/%9N3;R$NG;=L$K4X$9$k4pACE*8!F$(J | Forward Osmosis Membrane Separation Latex Particles | S-40 | 973 | |
P109 | Gas transport properties of interfacially polymerized polyamide composite membranes under different pre-treatments and temperatures | Gas separation polyamide-based membrane membrane pre-treatments | S-40 | 561 | |
(13:00$B!A(J13:40) ($B;J2q(J $BETN1(J $BL-N;(J) | |||||
P113 | [$BE8K>9V1i(J] $B%J%N%9%Z!<%9Kl5;=Q$N?7E83+(J | membrane separation green process nano space | S-40 | 528 | |
(13:40$B!A(J15:40) ($B:BD9(J $B5\K\(J $B3X!&5H=!(J $BH~5*(J) | |||||
P115 | SPPO$BCf6u;e%+!<%\%sKl$K$h$k%V%?%N!<%k?eMO1U$N?;F)5$2=J,N%@-G=(J | Carbon membrane Hollow fiber Pervaporation | S-40 | 189 | |
P116 | $B%@%$%d%b%s%I%i%$%/%+!<%\%sKl$N%W%i%:%^(JCVD$B@=Kl$*$h$SF)2aFC@-I>2A(J | diamond-like carbon membrane plasma-enhanced CVD gas separation | S-40 | 868 | |
P117 | $B9bF)2a@-(Jsilicalite-1$BKl$ND4@=K!$N8!F$(J | zeolite membrane separation silicalite-1 | S-40 | 769 | |
P118 | $B | zeolite secondary growth method B-SAPO | S-40 | 719 | |
P119 | MTW$B7?%<%*%i%$%HKl$rMQ$$$??;F)5$2=J,N%K!$K$h$k?e(J/2-$B%W%m%Q%N!<%k6&J(:.9g1U$+$i$NA*BrC&?e(J | MTW type zeolite membrane pervaporation | S-40 | 708 | |
P120 | $B%+%A%*%s8r497?%<%*%i%$%HKl$K$h$k%(%A%l%s(J/$B%(%?%sF)2aJ,N%FC@-$N8!F$(J | membrane separation zeolite membrane Y-type zeolite | S-40 | 812 | |
(15:40$B!A(J17:20) ($B:BD9(J $BW"ED(J $BM:0lO/!&86(J $B?-@8(J) | |||||
P121 | ZIF-8$BKl$N:n@=$H%W%m%T%l%s(J/$B%W%m%Q%sF)2aFC@-(J | Gas Separation Membrane ZIF-8 Propylene/Propane Separation | S-40 | 502 | |
P122 | Adsorption-desorption$BK!$K$h$k(JMOR$BKl$N?e!??];@5[CeFC@-8!F$(J | Adsorption-desorption method Mordenite membrane acetic acid | S-40 | 529 | |
P123 | $B%<%*%i%$%H$rMQ$$$?5$BN3H;6K!$K$h$kHy:Y6u7d9=B$I>2AK!$N3+H/(J | Zeolite adsorption micropore | S-40 | 248 | |
P124 | $BAXN.0h$G$N(JIPA-$B?e:.9g>x5$$N(JVP$BC&?e2aDx$N2r@O(J | zeolite membrane dehydration isopropyl alcohol | S-40 | 216 | |
P125 | AlPO4-18$BKl$N@=Kl2aDx$*$h$S?e(J/$B?];@F)2aJ,N%@-G=$N8!F$(J | AlPO4-18 Dehydration Pervaporation | S-40 | 768 | |
Q $B2q>l(J | |||||
$B9V1i(J $B;~9o(J | $B9V1i(J $BHV9f(J | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(J | $BJ,N`(J | $BHV9f(J $B | |
$B%7%s%]%8%&%`(J <$B0!NW3&!&D6NW3&N.BN$N9bEYMxMQ5;=Q$N?7E83+(J> | |||||
(9:40$B!A(J12:00) ($B:BD9(J $BED8}(J $B | |||||
Q103 | $B?eCf%J%N%Q%k%9J|EE$K$*$1$k%"%i%K%k%"%i%K%s$NH?1~7PO)5Z$SH?1~5!9=(J | Pulsed discharge Alanylalanine Reaction pathway | S-14 | 814 | |
Q104 | $BD6NW3&Fs;@2=C:AGCf$G$N%]%jF};@$N9g@.(J | supercritical carbon dioxide polylactic acid synthesis | S-14 | 759 | |
Q105 | $BD6NW3&Fs;@2=C:AG$HAB?e@-B?9& | Supercritical carbon dioxide Immobilized lipase Lipid modification | S-14 | 739 | |
Q106 | $BD6NW3&Fs;@2=C:AG$rMQ$$$??"J*L};i$NCj=P$HMO2rEY$+$i$N9M;!(J | supercritical carbon dioxide vegetable oil solubility | S-14 | 887 | |
Q107 | $BD6NW3&Fs;@2=C:AG(J-$B8~N.@\?(K!$K$h$k%j%b%M%s$NJ,N%(J | Limonene Supercritical carbon dioxide Separation | S-14 | 876 | |
Q108 | $B:.9g=uMOG^E:2C$K$h$k:{93;@2=J* | supercritical carbon dioxide extraction co-solvent | S-14 | 681 | |
Q109 | $B0!NW3&(JDME$B$rMQ$$$?AtN`$+$i$N%+%m%F%N%$%I$N<>=aCj=P(J | Wet extraction Carotenoids Dimethyl ether | S-14 | 631 | |
(13:00$B!A(J13:40) ($B;J2q(J $BKY@n(J $B0&98(J) | |||||
Q113 | [$B>7BT9V1i(J] $B%a%?%\%m%_%/%9$K$*$1$kD6NW3&N.BN%F%/%N%m%8!<$N2DG=@-(J | supercritical fluid chromatography supercritical fluid extraction metabolomics | S-14 | 78 | |
(13:40$B!A(J15:20) ($B:BD9(J $B?@ED(J $B1Q51!&@n?,(J $BAo(J) | |||||
Q115 | $B%"%s%b%K%"$ND6NW3&?e;@2=H?1~$K$*$1$k%"%k%3!<%kE:2C8z2L$NB.EYO@E*8!F$(J | supercritical water oxidation ammonia kinetics | S-14 | 567 | |
Q116 | $BG.?e$rMQ$$$?%;%k%m!<%9$NE|2=$K$*$1$k4uGv;@E:2C$N8z2L(J | cellulose hydrothermal dilute acid | S-14 | 824 | |
Q117 | $B0!NW3&?e(J+$B;@?(G^$K$h$kBg7?AtN`$+$i$N%0%k%3!<%9@8@.(J | subcritical water macroalgae acid catalyst | S-14 | 633 | |
Q118 | $B0!NW3&?eA0=hM}(J+$BF1;~E|2=H/9Z$rMQ$$$k%Z!<%Q!<%9%i%C%8$+$i$N%P%$%*%(%?%N!<%k@8@.(J | subcritical water bio ethanol paper sludge | S-14 | 678 | |
Q119 | $B%P%V%k:.9gG.?e$K$h$k%;%k%m!<%9E|2=A0=hM}5;=Q$N3+H/(J | Cellulose Hydrothermal Pretreatment Microbubble | S-14 | 792 | |
(15:20$B!A(J17:00) ($B:BD9(J $BNS(J $BN\H~;R!&NkLZ(J $B>O8g(J) | |||||
Q120 | $BD6NW3&!&0!NW3&N.BN$rMQ$$$?%^%j%s%P%$%*%^%9$NL}2=(J | super critical fluid bio fuel marine biomass | S-14 | 578 | |
Q121 | $BD6NW3&N.BN$rMQ$$$k%"%i%_%IA!0]6/2=%W%i%9%A%C%/$N%j%5%$%/%k(J | Supercritical fluid AFRP Recycling | S-14 | 669 | |
Q122 | $B%a%A%k%"%_%s?eMO1U$rMQ$$$?%]%j%+!<%\%M!<%H@=IJ$N?eG.2r=E9g(J | hydrothermal depolymerization polycarbonate product methylamine | S-14 | 596 | |
Q123 | $B1v4p@-G.?e$K$h$k=-AG2=FqG3:^$NC&=-AG2=(J | Hydrothermal Debromination Flame-retardant | S-14 | 590 | |
Q124 | $BD6NW3&%"%k%4%s(J/$B?eMO1U3&LL$K$*$1$k%Q%k%9%"!<%/J|EE%W%i%:%^$N@8@.$*$h$SH?1~$X$N1~MQ(J | plasma supercritical | S-14 | 284 | |
R $B2q>l(J | |||||
$B9V1i(J $B;~9o(J | $B9V1i(J $BHV9f(J | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(J | $BJ,N`(J | $BHV9f(J $B | |
$B%7%s%]%8%&%`(J <$B0!NW3&!&D6NW3&N.BN$r4^$`7O$NJ*@-8&5f$N:GA0@~(J> | |||||
(10:00$B!A(J11:20) ($B:BD9(J $B;y6L(J $BBgJe!&9&(J $B>;0l(J) | |||||
R104 | Chemoselective hydrogenation of chloronitrobenzene in supercritical carbon dioxide using Pd supported on heteroatom substituted MCM-41 | supercritical carbon dioxide hydrogenation chloronitrobenzene | S-13 | 113 | |
R105 | $B%J%N6u7dFb$K$*$1$kNW3&E@9_2<(J | Critical point Nanopore Molecular dynamics | S-13 | 175 | |
R106 | $BFs@.J,:.9gN.BN$NNW3&E@6aK5$K$*$1$k2a>j%(%s%?%k%T!<$NFC0[E*5sF0$NM=B,(J II. $BNW3&50@W$H2a>j%(%s%?%k%T!<$rF@$k>uBV$N(Jp-T$BLL>e$G$N0LCV4X78(J | excess enthalpy critical locus binary mixture | S-13 | 917 | |
R107 | $BNW3&E@6aK5$G$N%Y%s%<%s(J+$B%7%/%m%X%-%5%s7O$N2a>j%(%s%?%k%T!<-6(J | Excess enthalpy Critical Point Binary fluid mixtures | S-13 | 1004 | |
(11:20$B!A(J12:00) ($B;J2q(J $BAj_7(J $B?r;K(J) | |||||
R108 | [$B>7BT9V1i(J] $BD6NW3&N.BNCf$G$NEE2Y0\F0H?1~$H%W%m%H%s0\F0H?1~(J | electron transfer proton transfer supercritical fluid | S-13 | 111 | |
(13:00$B!A(J14:40) ($B:BD9(J $BC]NS(J $BNI9@!&Aj_7(J $B?r;K(J) | |||||
R113 | $B%X%-%5%s(J+$BB?J,;6%]%j%(%A%l%s7O$N9b299b05AjJ?9U(J | polydisperse polyethylene phase equilibria Sanchez-Lacombe EOS | S-13 | 642 | |
R114 | $B%(%A%l%s(J/ $B?];@%S%K%k6&=E9gBN(J(EVA)$B@=B$$K4X$9$k(J4$B@.J,7OAjJ?9U$N%7%_%e%l!<%7%g%s(J | phase equilibria poly(ethylene-co-vinyl acetate) Sanchez-Lacombe equation of state | S-13 | 383 | |
R115 | $B;g302D;kJ,8wK!$rMQ$$$?K0OBMO2r05NOC5:wK!$K$h$kD6NW3&(JCO2$BCf$NM-5!J*$NMO2rEYB,Dj(J | spectroscopic solubility measurement supercritical carbon dioxide organic compounds | S-13 | 1007 | |
R116 | $BJ,;R>pJs$+$i$NG[0L?tM=B,$rMQ$$$?>uBVJ}Dx<0$K$h$kD6NW3&Fs;@2=C:AG$X$NMO2rEY$N?d;;(J | drug solubility coordination number supercritical carbon dioxide | S-13 | 477 | |
R117 | $BD6NW3&Fs;@2=C:AGCf$N%>%k%2%kK!$K$h$k%J%NN3;R4^M-Kl$N:n@=$K$*$1$k5$1UJ?9U$NGD0.(J | vapor-liquid equilibrium supercritical carbon dioxide silica alkoxide | S-13 | 371 | |
(14:40$B!A(J16:20) ($B:BD9(J $B:4F#(J $BA1G7!&2<;3(J $BM52p(J) | |||||
R118 | $BE7A3J*4^M-5!G=@-@.J,$ND6NW3&N.BN@:N1$N%b%G%k2=$K8~$1$?5$1UJ?9U$NB,Dj(J | supercritical fluid vapor-liquid equilibrium rectification | S-13 | 550 | |
R119 | CO2-$B%a%?%N!<%k:.9gN.BNCf$K$*$1$kM-5!2=9gJ*$NL58B4u | Taylor dispersion CO2 mixture Diffusion coefficient | S-13 | 801 | |
R120 | $BD6NW3&5Z$S1UBN>uBVCf$K$*$1$k%H%j%9(J($B%"%;%A%k%"%;%H%J%H(J)$B%"%k%_%K%&%`$N3H;678?t$NB,Dj$HAj4X(J | diffusion supercritical fluid chromatography metal complex | S-13 | 925 | |
R121 | $BFs;@2=C:AGKDD% | CO2-Expanded Liquid Polymer Solution Viscosity | S-13 | 112 | |
R122 | $BFs;@2=C:AG2C05$K$h$kM;E@9_2<$NG.NO3XE*2r@O(J | carbon dioxide equation of state phase equilibrium | S-13 | 58 | |
$B3X@8>^I=>4<0(J | |||||
S $B2q>l(J | |||||
$B9V1i(J $B;~9o(J | $B9V1i(J $BHV9f(J | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(J | $BJ,N`(J | $BHV9f(J $B | |
$B%7%s%]%8%&%`(J <$B:`NA!&3&LLF$O@2q!V:`NAAO=P$H3&LL@)8f$N?7E83+!W(J> | |||||
(10:00$B!A(J10:40) ($B;J2q(J $BEOn5!!E/(J) | |||||
S104 | [$B0MMj9V1i(J] $B?eMO1UCf$K$*$1$kN>?FG^@-J,;R=89gBN$N?75,$JJ,;R%7%_%e%l!<%7%g%s(J | amphiphile implicit solvent model molecular simulation | S-33 | 694 | |
(10:40$B!A(J11:20) ($B;J2q(J $BOF86(J $BE0(J) | |||||
S106 | [$B0MMj9V1i(J] $BM;1U>=@O$K$*$1$k8G1U3&LL$G$NMO | solute distribution melt crystallization crystal purity | S-33 | 52 | |
(11:20$B!A(J12:00) ($B;J2q(J $B4];3(J $BC#@8(J) | |||||
S108 | [$B0MMj9V1i(J] $B8zN(E*$J%$%*%sM"Aw$r | nanogel ion transport plastic enzymes | S-33 | 470 | |
(13:00$B!A(J14:40) ($B:BD9(J $BEOn5(J $BE/!&>.NS(J $BK'CK(J) | |||||
S113 | [$BM%=(O@J8>^(J] $B1UAjK!$K$h$k@QAX%;%i%_%C%/%3%s%G%s%5! | Metallic film Terminal electrode Wet chemical preparation | S-33 | 10 | |
S114 | $B%&%'%C%H%W%m%;%9$K$h$k%U%CAG%I!<%W;@2=%9%:F)L@F3EEKl$N9=B$@)8f(J | SnO2:F transparent conductive film spray deposition | S-33 | 844 | |
S115 | $B%V%m%C%/%3%]%j%^!<$rCr7?$K$7$?(J3$B | self-assembly block copolymer phase equilibrium | S-33 | 534 | |
S116 | $B9bJ,;R%J%N%3%s%]%8%C%HGvKlFb$N%J%NN3;R6u4V9=B$$K5Z$\$9=t0x;R$N1F6A(J | polymer composite film nanoparticles spatial structure | S-33 | 689 | |
S117 | $B%-%e!<%V7?%7%m%-%5%s%f%K%C%H$rMQ$$$?B?9&BN$N9g@.(J | Octasilsesquioxane Porous Network Imine Bonding | S-33 | 997 | |
(14:40$B!A(J16:20) ($B:BD9(J $B | |||||
S118 | $BJ,;R%7%_%e%l!<%7%g%s$K$h$k%<%*%i%$%HCr7?C:AG$N5[Ce5sF08!F$$H5[Ce%R!<%H%]%s%W$X$N1~MQE83+(J | Zeolite templated carbon Adsorption heat pump Molecular simulation | S-33 | 228 | |
S119 | $B;@2=0!1t$+$i%_%/%m9&@-%<%*%i%$%HMM%$%_%@%>%l!<%H9=B$BN$X$N7k>=E>49(J | zeolitic imidazolate framework mechanochemical dry conversion solid-solid reaction | S-33 | 428 | |
S120 | $BJ4:U%W%m%;%9$K$h$k%<%*%i%$%H$N6I=j9=B$JQ2=$N2r@O(J | zeolite milling local structure | S-33 | 431 | |
S121 | $BB?9&@-G[0L:xBN$,<($9%2!<%H5[Ce8=>]$N29EY0MB8@-M=B, | Porous coordination polymer Metal-organic framework potential theory | S-33 | 761 | |
S122 | $B6bB0@\9gMQF<7O%J%NN3;R$N3+H/(J | copper nanoparticle metal-metal bonding | S-33 | 126 | |
T $B2q>l(J | |||||
$B9V1i(J $B;~9o(J | $B9V1i(J $BHV9f(J | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(J | $BJ,N`(J | $BHV9f(J $B | |
$B%7%s%]%8%&%`(J <$B8G2=8=>]$rH<$&A`:n$H>=@O5;=Q$K4X$9$k%7%s%]%8%&%`!J:`NA!&3&LLIt2q!K(J> | |||||
(10:00$B!A(J11:00) ($B:BD9(J $BEgFb(J $B | |||||
T104 | $B8w;RAj4XK!$K$h$k(JKCl$B?eMO1U$+$i$N3KH/@88=>]$N4Q;!(J | DLS Nucleation Crystallization | S-35 | 60 | |
T105 | mL$BO"B3>=@O$K$*$1$k@=IJ7k>=$NN37B$K5Z$\$93IYB$N1F6A(J | crystallization agitation L-glutamic acid | S-35 | 794 | |
T106 | $B1v4p@-?];@F<$N@O=P$K5Z$\$986NA:.9g>r7o$N1F6A(J | copper hydroxide acetate precipitation mixing | S-35 | 809 | |
(11:00$B!A(J12:00) ($B:BD9(J $BA0ED(J $B8w<#(J) | |||||
T107 | $B%5%j%A%k;@!?%K%3%A%s%"%_%I7O(Jcocrystal$B$N;0@.J,Aj?^$HMO2r5sF0(J | cocrystal dissolution behavior ternary phase diagram | S-35 | 46 | |
T108 | $B%"%_%m%$%I7A@.$K5Z$\$9%U%k%U%i!<%kM6F3BN$N1F6A(J | amyloid frufral inhibition | S-35 | 1000 | |
T109 | $B%(%k%4%9%F%m!<%k$N>=@O$K$*$1$kHyNL?eJ,$N1F6A(J | ergosterol solvate amorphous | S-35 | 831 | |
(13:00$B!A(J14:00) ($B:BD9(J $BBl;3(J $BGn;V(J) | |||||
T113 | [$BM%=(O@J8>^(J] $BN37BJ,I[$,69$$Hy7k>=$r@=B$$9$k$?$a$N7+$jJV$72sJ,Nd5Q>=@O(J | Crystal size distribution Recrystallization Solution structure | S-35 | 7 | |
T114 | $BHy:Y9=B$BN$rMQ$$$?%"%k%+%j6bB0$N@8@.H?1~(J | alkali metal microstructure co-deposition | S-35 | 169 | |
T115 | $BH?1~>=@O2aDx$K$*$1$k%b%j%V%G%s;@%8%k%3%K%&%`$N7A>u$*$h$SN37BI>2A(J | Crystallization zirconium molybdate | S-35 | 405 | |
(14:00$B!A(J15:00) ($B:BD9(J $B8^==Mr(J $B9,0l(J) | |||||
T116 | Anti-Solvent($BHsMOG^(J)$BE:2C>=@O$G$NA`:n>r7o$,7k>=N3;R72$N7ABV$KM?$($k1F6A(J | anti-slvent morphology crystallization | S-35 | 412 | |
T117 | $BD6NW3&MOBN5^B.KDD%K!$K$h$k%"%s%H%i%;%sGvKlAO@=$N2aK0OBEY$K4p$E$$$?GvKl@_7W5;=Q(J | RESS technique anthracene thin films thin films design | S-35 | 467 | |
T118 | $B5U?;F)Kl$NG;EYJ,6KAX$K$*$1$kL55!%9%1!<%k$N7A@.>r7o(J | Reverse Osmosis scale calcium sulfate | S-35 | 643 | |
(15:00$B!A(J16:00) ($B:BD9(J $BCfB<(J $B0lJf(J) | |||||
T119 | $B0eLtIJ86Lt$N%*%$%k2=>=@O$K$*$1$k7k>=N37B@)8f(J | Crystallization Crystal size Oil droplet | S-35 | 133 | |
T120 | $B@)8B6u4VFb$G$N%j%s;@%+%k%7%&%`7O2=9gJ*$N@8@.$K5Z$\$9:.9gFC@-$N1F6A(J | calcium phosphate simulated body fluid confined space | S-35 | 402 | |
T121 | $B%"%9%3%k%S%s;@$rMQ$$$?4T85>=@OK!$K$h$kGr6b%J%NN3;R$NN37B@)8f(J | Pt nanoparticle PSD-control Reduction crystallization | S-35 | 408 | |
(16:00$B!A(J17:00) ($B:BD9(J $BA%1[(J $BK.IW(J) | |||||
T122 | $BMO1UK!$K$h$k6&7k>=N3;R72AO@=$HN3;R72IJ | Co-crystal phase diagram Crystalline particle | S-35 | 433 | |
T123 | $BKlG;=L$K$*$1$k(JCaC2O4$B7k>=2=$KM?$($k%/%(%s;@E:2C$N1F6A(J | calcium oxalate citrate membrane crystallization | S-35 | 720 | |
T124 | $B%m!<%?%j!<%I%i%`%U%l!<%+$rMQ$$$?Nd5Q>=@OK!$N8&5f(J | Crystallization Drum Flaker | S-35 | 1013 | |
U $B2q>l(J | |||||
$B9V1i(J $B;~9o(J | $B9V1i(J $BHV9f(J | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(J | $BJ,N`(J | $BHV9f(J $B | |
$B%7%s%]%8%&%`(J <$B5!G=@-HyN3;R!$9bJ,;R!&%2%k%^%F%j%"%k$N9b5!G=2=!&?7E83+!&MQES3+H/!J:`NA!&3&LLIt2q!K(J> | |||||
(13:00$B!A(J13:40) ($B:BD9(J $B5HED(J $B>;90(J) | |||||
U113 | [$B>7BT9V1i(J] $BN>?FG^@-%]%j%(!<%F%k$,M65/$9$kN>O"B3%^%$%/%m%(%^%k%7%g%s$H$=$N1~MQ(J | Bicontinuous microemulsion Amphiphilic polyether Make-up remover | S-36 | 41 | |
U114 | [$B>7BT9V1i(J] $B?92 | Capsule Technology | S-36 | 108 | |
(13:40$B!A(J14:40) ($B:BD9(J $BOFED(J $BOB98!&ED8}(J $B2B@.(J) | |||||
U115 | $B%U%)%H%/%m%_%C%/?'AG$r8GDj2=$9$kHyN3;R$rE:2C$7$?%W%i%9%A%C%/7O%a%,%M%l%s%:$NH/?'FC@-I>2A(J | particle photochromic dye an eyeglass lens | S-36 | 238 | |
U116 | Paracoccus denitrificans$B$r8GDj2=$9$k%b%N%j%99=B$%^%$%/%m%+%W%;%k$NC&CbB.EY8~>e$K4X$9$k8!F$(J | Denitrification Microcapsule Biofilm | S-36 | 319 | |
U117 | Rhodococcus erythropolis CS98$B3tJq3g%2%k%S!<%:$N:n@=$*$h$S%;%7%&%` | cesium microorganism hydrogel | S-36 | 894 | |
(14:40$B!A(J15:40) ($B:BD9(J $BED@n(J $BBgJe!&DL:e(J $B1I0l(J) | |||||
U118 | $B%a%i%_%s(J-$B%[%k%`%"%k%G%R%I$r303L$H$7$?%"%/%j%k7O=$I|:`F~$j%^%$%/%m%+%W%;%k$rF3F~$7$?(JTDCB$B;n83JR$N<+8J=$I|5!G=I>2A(J | mieroencapsulation self-healing melamine-formaldehyde | S-36 | 861 | |
U119 | $BB?AX=E9g8GBNKl$rMxMQ$7$?J#9gHyN3;R$ND4@=(J | composite particle polymer | S-36 | 782 | |
U120 | $B2M66@-%b%N%^!<$N%V%l%s%I$K$h$kJ,;R%$%s%W%j%s%H9bJ,;R8GDjEE6K$N?eCf%-%i%k%;%s%7%s%0$N | Chirality Molecularly Imprinted Polymer Gate Effect | S-36 | 397 | |
(15:40$B!A(J16:40) ($B:BD9(J $B5H8+(J $BLwCK(J) | |||||
U121 | $B:YK&G]M\$H%?%s%Q%/ | oil/water interface cell cultivation protein transfection | S-36 | 852 | |
U122 | $B?eMO1U$rFbJq$7$?C1J,;6%]%jF};@%^%$%/%m%+%W%;%k$N?75,D4@=K!$N3+H/(J | emulsification copolymer phase separation | S-36 | 434 | |
U123 | $BL5EE2r$a$C$-H?1~$rMxMQ$7$?6bB0HoJ$%^%$%/%m%+%W%;%k$ND4@=(J | electroless-deposition microcapsule organic-inorganic hybrid | S-36 | 960 | |
V $B2q>l(J | |||||
$B9V1i(J $B;~9o(J | $B9V1i(J $BHV9f(J | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(J | $BJ,N`(J | $BHV9f(J $B | |
$B%7%s%]%8%&%`(J <$B%(%M%k%.!<%7%s%]%8%&%`(J> | |||||
(13:00$B!A(J14:20) ($B:BD9(J $B5A2H(J $BN.NS(J $B?.2p(J) | |||||
V113 | CO2$B2s<}7?9b8zN((JIGCC$BMQ4%<0C&N2%W%m%;%9$K$*$1$kC:AG@O=PM^@):v$NHsJ?9UO@E*I>2A(J | IGCC with CO2 capture high temperature sulfur removal carbon deposition | S-15 | 117 | |
V114 | $B?tCM%7%_%e%l!<%7%g%s$K$h$kH/EEMQBg7?%\%$%iFbHyJ4C:G3>F>l$N;@AGG;EYJ,I[M=B,(J | pulverized coal combustion CFD simulation boiler | S-15 | 588 | |
V115 | $B6u5$G3>F$*$h$S(JOxy-fuel$BG3>F$K$*$1$kG3>FGS%,%9$NNd5Q2aDx$K@O=P$9$k=E6bB0$N5sF0(J | heavy metal vapors oxy-fuel combustion deposition | S-15 | 644 | |
V116 | $B@PC:$rG3NA$H$7$?;@2=E4MxMQ%1%_%+%k%k!<%WG3>F$NH?1~FC@-(J | chemical-looping combustion coal oxygen carrier | S-15 | 914 | |
(14:20$B!A(J15:40) ($B:BD9(J $BGH2,(J $BCN> | |||||
V117 | $B@PL}%3!<%/%9$r86NA$H$9$k(JKOH$BIj3hC:$NM-32%,%95[CeFC@-(J | petroleum coke activated carbon | S-15 | 618 | |
V118 | $B%]%jN2;@BhFsE4$NG.J,2rFC@-$K4X$9$k8&5f(J | flocculant thermal decomposition desulfurization | S-15 | 713 | |
V119 | $BMO:^Cf$*$h$S5!3#E*2C052<$NG.=hM}$K$h$kDcIJ0LC:AG;q8;$N9bIJ0L2=(J | low-rank coal biomass upgrading | S-15 | 898 | |
V120 | $BJ.L8G3>F$K$*$$$F?eJ. | Diesel Spray combustion NOx emission | S-15 | 614 | |
(15:40$B!A(J17:00) ($B:BD9(J $BiCED(J $BN40l!&66K\(J $BK>(J) | |||||
V121 | $BC:2=%b%j%V%G%s4p?(G^(J $B$K$h$k%a%?%N!<%k$NDc29?e>x5$2~ | molybdenum carbide steam reforming hydrogen | S-15 | 76 | |
V122 | Effect of Reaction Parameters on the Activity of Kovar Based Catalyst for Dry Reforming of Tetradecane | Kovar dry reforming tetradecane | S-15 | 202 | |
V123 | $B%3!<%R! | activated carbon waste coffee beans steam activation | S-15 | 457 | |
V124 | $BBOHn2=4%Ag1xE%$r86NA$H$9$kC:2==hM}%W%m%;%9$K$*$1$kJ* | sewage sludge carbonization material balance | S-15 | 581 | |
W $B2q>l(J | |||||
$B9V1i(J $B;~9o(J | $B9V1i(J $BHV9f(J | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(J | $BJ,N`(J | $BHV9f(J $B | |
$B%7%s%]%8%&%`(J <$B3W?7E*J4BN%W%m%;%95;=Q$N?JE8!]@8@.!&5!G=2=!&7WB,!&FC@-I>2A!&%O%s%I%j%s%0!](J> | |||||
(9:00$B!A(J10:20) ($B:BD9(J $B:4Gl(J $BN4(J) | |||||
W101 | $BCF@-%V%l!<%I$rMQ$$$?J4BN:.9g$N?tCM2r@O$*$h$S | Granular analysis Elastic body analysis Powder mixing | S-19 | 704 | |
W102 | DEM$BAF;k2=%b%G%k$rMQ$$$?(J3$BZ(J | Fluidized bed DEM Coarse grain model | S-19 | 595 | |
W103 | DEM$B%7%_%e%l!<%7%g%s$K$h$k9bB.J4BN:.9gAuCV$N:.9gFC@-2r@O(J | DEM simulation Agitating Mixer Mixing Characteristics | S-19 | 130 | |
W104 | DEM$B$K$h$kJ4:U5sF0$N2r@O(J | DEM breakage grinding | S-19 | 786 | |
(10:20$B!A(J12:00) ($B:BD9(J $B;3K\(J $BDLE5!&J!0f(J $B9qGn(J) | |||||
W105 | $B8G5$N.F0AX$rMQ$$$?4%<0Hf=EJ,N%$K$*$1$kJ,N%BP>]J*$N=hM}NL$HJ,N%8zN($N4X78(J | dry separation fluidized bed feed amount | S-19 | 239 | |
W106 | $B8G5$N.F0AXFb$G$NL)EYJP@O$NN.F02=;~4V0MB8@-$K4X$9$k4pACE*8!F$(J | fluidized bed density segregation fluidizing time | S-19 | 252 | |
W107 | $B8G5$N.F0AXFb$G$NL)EYJP@O$rMxMQ$7$?N3>u:.9gJ*$N4%<0J,N%$K5Z$\$9N.F02=IwB.$N1F6A(J | fluidized bed density segregation airflow rate | S-19 | 357 | |
W108 | 3$B< | loop-seal fluidized bed particle circulation | S-19 | 790 | |
W109 | $BEEGH5[<}%^%0%M%?%$%HA06nBNJ4Kv$NN.F0AX9g@.(J | magnetite electromagnetic wave absorption fluidized bed | S-19 | 981 | |
(14:00$B!A(J15:00) ($B:BD9(J $B2.(J $B?r(J) | |||||
W116 | $B%_%9%H$rMxMQ$7$?4%<0J,5i5!$NJ,5i@-G=8~>e(J | Classification Particle Mist | S-19 | 845 | |
W117 | $BJ.L8G.J,2rK!$K$h$k(JLiFeBO3$B$N9g@.(J | LiFeBO3 Cathode Lithium batteries | S-19 | 365 | |
(14:40$B!A(J16:00) ($B:BD9(J $BCfN$(J $BJY(J) | |||||
W118 | $BJ.L8G.J,2rK!$K$h$k<'@-HyN3;R$N9g@.$H$,$s29G.NEK!$X$N1~MQ(J | Magnetic fine particle Spray pyrolysis Hyperthermia | S-19 | 805 | |
W119 | $B@EEEJ.L8$K$h$k%$%*%s@8@.NL$K5Z$\$9MO1UG;EY$N1F6A(J | Electrospray Poly ethylene glycol Ion generation | S-19 | 780 | |
W120 | $B%j%A%&%`N22+EECS@56K:`NA$N9g@.(J | Cathode Lithium sulfur batteries Ball milling | S-19 | 381 | |
W121 | $B1UAjK!$K$h$k(JMgF2$BCf6u%J%NN3;R$N9g@.$HN37B@)8f(J | magnesium fluoride hollow nanoparticles liquid phase method | S-19 | 152 | |
(16:00$B!A(J18:00) ($B:BD9(J $BLZ2<(J $BBnLi!&A0@n(J $BE/Li(J) | |||||
W122 | $B%>%k!>%2%kE>0\$K$h$kJ4BN:`NA$N@=B$(J | Gelling time Specific surface area Pore volume | S-19 | 503 | |
W123 | $BHsG.M;9g%K%C%1%k%J%NN3;R$N5$Aj9g@.(J | nickel nanoparticles non-aggregation electric furnace | S-19 | 219 | |
W124 | $B?eG.=hM}$K$h$k@PC:3%$H%P%$%*%^%9>F5Q3%$+$i$N%<%*%i%$%H9g@.(J | Coal fly ash Biomass ash Zeolite | S-19 | 639 | |
W125 | $BDc(JHGI$B_M@DC:$N%m!<%i%_%k$K$*$1$kJ4:UFC@-$HHyJ4C:G3>FO'$K$*$1$kG3>FFC@-$NI>2A(J | Low HGI coal Roller mill Pulverized coal combustion | S-19 | 9 | |
W126 | $B%G%#%9%/%_%kJ4:U$K$h$jF@$i$l$?%;%k%m!<%9%J%N%U%!%$%P!<$N@- | Cellulose nanofiber disk mill additive | S-19 | 213 | |
W127 | $BI=LL2~ | surface modification slurry viscosity | S-19 | 735 | |
XA $B2q>l(J | |||||
$B9V1i(J $B;~9o(J | $B9V1i(J $BHV9f(J | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(J | $BJ,N`(J | $BHV9f(J $B | |
$B%7%s%]%8%&%`(J <$BG.J* | |||||
(10:00$B!A(J11:00) ($B:BD9(J $B>>7((J $BMN2p(J) | |||||
XA104 | $B5mF}= | Milk flow Packaging process Numerical analysis | S-18 | 210 | |
XA105 | $B@QAX9=B$$NB?=E8zMQ3$?e>xH/G;=L4o$N@-G=(J($B3H;65wN%(J10mm$B$N(J3$BCJ$*$h$S(J4$BCJ8zMQ$NG;=L4o(J) | Seawater Concentrator Multiple effect | S-18 | 743 | |
XA106 | $B%^%$%/%m%A%c%M%kFb$NBg$-$J29EY8{G[2<$K$*$1$kHyN3;R$NG.1KF0(J | thermophoresis soret cofficient micro channel | S-18 | 648 | |
(11:00$B!A(J12:00) ($B:BD9(J $BLg3p(J $B=( | |||||
XA107 | $B0[$J$k?-D9B.EY$,9bJ,;RMpN.M^@)$KM?$($k1F6A$N2rL@(J | Drag reduction Polymer Extensional viscosity | S-18 | 686 | |
XA108 | $B$;$sCG1~Ez@-$rM-$9$kEIKl$NMpN.Dq93Dc8:8z2L(J | Turbulent flow Shear stress response Numerical simulation | S-18 | 105 | |
XA109 | $B29EY:9$HG;EY:9$K5/0x$9$k%^%i%s%4%KBPN.$N2sE>$H<'>l$K$h$k@)8f$K4X$9$k?tCM2r@O(J | Marangoni convection Floating zone technique Si/Ge | S-18 | 177 | |
(14:00$B!A(J15:00) ($B:BD9(J $BK\4V(J $B=S;J(J) | |||||
XA116 | [$BE8K>9V1i(J] $BN.F0?(G^AX$K$*$1$k%,%9@Z$j49$($K5/0x$9$kHsN.F02=8=>]$N2D;k2=(J | fluidized bed defluidization gas switching | S-18 | 419 | |
XA118 | $BJ| | combustion simulation DEM radioactive cesium | S-18 | 851 | |
(15:00$B!A(J16:00) ($B:BD9(J $B4dED(J $B=$0l(J) | |||||
XA119 | $B<+A3BPN.$NB%?J$K$h$kNd5Q%7%9%F%`$NDcG.Dq932=$K$D$$$F(J | Natural Convection Convection Promotion Heat Sink | S-18 | 1011 | |
XA120 | $B?eJ?6k7AN.O)Fb$K$*$1$kD>8rJ#9gBPN.G.EAC#(J | mixed convection heat transfer numerical simulation | S-18 | 50 | |
XA121 | $B%U%#%sI=LL>e$NKl>u6E=L$N?tCM2r@O(J | Film Condensation Numerical Simulation Front-Tracking | S-18 | 539 | |
(16:00$B!A(J17:00) ($B:BD9(J $B?eED(J $B7I(J) | |||||
XA122 | $BO"B39=B$BN$N%H%]%m%8!<:GE,2=$G$N%A%'%C%+!<%\!<%ILdBj(J | Structure Topology optimization SIMP | S-18 | 73 | |
XA123 | $B%H%]%m%8!<:GE,2=$GF@$i$l$kO"B39=B$BN$N0l0U@-(J | Structure Topology optimization SIMP | S-18 | 74 | |
XA124 | $BG4CF@-N.BNN.O)Fb$KF3F~$5$l$?J#?t5$K"$K5Z$\$905NO?6F0$N1F6A(J | defoaming process pressure oscillation shear-thinning fluid | S-18 | 273 | |
XB $B2q>l(J | |||||
$B9V1i(J $B;~9o(J | $B9V1i(J $BHV9f(J | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(J | $BJ,N`(J | $BHV9f(J $B | |
$B%7%s%]%8%&%`(J <$B5$K"!&1UE)!&HyN3;RJ,;69)3X(J2013> | |||||
(9:00$B!A(J10:00) ($B:BD9(J $BCfN$(J $BJY(J) | |||||
XB101 | $BF}2=!u8G2=K!$rMQ$$$?3&LL3h@-:^L5E:2C$G$N8G2=L};i%J%NHyN3;R@=B$$K4X$9$k4pACE*8!F$(J | surfactant-free solid lipid nanoparticle hot homogenization | S-20 | 246 | |
XB102 | $BHyN3;R7|By1U$ND62;GHL82=$K$h$k%5%V%_%/%m%sN3;R$NJ,2h(J | ultrasound atomization particle | S-20 | 409 | |
XB103 | $B0lN.BN%9%W%l!<%N%:%k$rMQ$$$?%]%j%"%/%j%k%"%_%I9bJ,;RN>@-EE2r | spray nozzle acrylamide polyampholyte volatile organic compound | S-20 | 489 | |
(10:00$B!A(J11:00) ($B:BD9(J $BLZKs(J $B8w@5(J) | |||||
XB104 | $B9bG;EY%9%i%j! | viscoelastic measurement gel-like structure sedimentation | S-20 | 821 | |
XB105 | $BN.F02=%,%9$N@Z$j49$($K$h$C$F5/$-$kHsN.F02=8=>]$N%a%+%K%:%`(J | Fluidizaed bed Defluidization Diffusion | S-20 | 447 | |
XB106 | Hamiltonian MPS$BK!$K$h$kHs05=L@-:.AjN.$N?tCM2r@O(J | multiphase flow incompressible flow particle method | S-20 | 703 | |
(11:00$B!A(J12:00) ($B:BD9(J $BB@ED(J $B8w9@(J) | |||||
XB107 | $B%S!<%:%_%k$N(JCFD$B%7%_%e%l!<%7%g%s$K$h$kJ4:U@-I>2A(J | Bead mill CFD Slurry | S-20 | 172 | |
XB108 | [$BE8K>9V1i(J] $BJ4BN$,78$o$k%^%k%A%U%#%8%C%/%9%7%_%e%l!<%7%g%s$N8=>u!&E8K>(J | Discrete element method Solid-fluid coupling problems Multi-physics models | S-20 | 19 | |
(14:00$B!A(J15:00) ($B:BD9(J $BJ?Ln(J $BGnG7(J) | |||||
XB116 | $B%^%$%/%m%P%V%kH/@84o$rMxMQ$7$?%,%9%O%$%I%l!<%H$N7A@.5sF0(J | Methane Hydrate Microbubbles Gas Flow Rate | S-20 | 360 | |
XB117 | $B%&%k%H%i%U%!%$%s%P%V%k$r4^$s$@D6=c?e$K$h$k1vIUCeJILL$N@v>t(J | Ultrafine bubble Cleaning Water | S-20 | 366 | |
XB118 | $BCf6u>uC:;@%+%k%7%&%`N3;R:n@=$K$*$1$k=i4|(JpH$B$*$h$S(JCO2$BJ,N(0MB8@-(J | hollow particle calcium carbonate gas-liquid reaction | S-20 | 982 | |
(15:00$B!A(J16:00) ($B:BD9(J $B;{:d(J $B9(0l(J) | |||||
XB119 | $B5$K"N.$K$*$1$k1UAjJ* | Mass transfer coefficient Bubble flow Bubble clustering | S-20 | 77 | |
XB120 | $B%+%?%i!<% | Catalase Liposomes Oxygen transfer | S-20 | 448 | |
XB121 | 2$Be>:FC@-$*$h$S<~JUN.$l$N2D;k2=2r@O(J | 2D bubble column PIV analysis wall effect | S-20 | 1005 | |
(16:00$B!A(J17:20) ($B:BD9(J $BEZ20(J $B3hH~(J) | |||||
XB122 | $B%(%8%'%/%?$rMQ$$$?5$1U:.9g5!9=$K$*$1$k8w%U%!%$%P!<%W%m!<%V$K$h$k5$K"7WB,(J | Bubble measurement Optical fiber probe Ejector | S-20 | 552 | |
XB123 | $B6k7AMF4oFb$N5$1UFsAjN.N.F08=>]$N7WB,$H2r@O(J | gas-liquid flow PIV | S-20 | 863 | |
XB124 | $B@{2sN.%(%"%l!<%7%g%s$K$*$1$k%,%9%[!<%k%I%"%C%W$NAj4V78?t$KBP$9$k46EY2r@O(J | Bubble CFD Aeration | S-20 | 116 | |
XB125 | $B?eJ?G[CV1_E{AeFb$N5$K"N.F0%Q%?!<%s$H$=$N<~4|(J | Bubble flow horizontal cylindrical vessel Flow pattern | S-20 | 685 | |
XC $B2q>l(J | |||||
$B9V1i(J $B;~9o(J | $B9V1i(J $BHV9f(J | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(J | $BJ,N`(J | $BHV9f(J $B | |
$B%7%s%]%8%&%`(J <$B:G?7$N%_%-%7%s%05;=Q(J> | |||||
(9:00$B!A(J10:00) ($B:BD9(J $B2CF#(J $BDw?M!&1v86(J $B9n8J(J) | |||||
XC101 | [$BM%=(O@J8>^(J] $BG4CF@-N.BN$N3IYB;~$K7A@.$5$l$k%?%^%M%.>u9=B$(J | Surfactant solution paddl impeller viscoelasticity | S-21 | 32 | |
XC102 | $B@55U8r8_2sE>Mc$,0z$-5/$3$912N.$l$,N.BNJQ7A$KM?$($k1F6A(J | unsteady operation CFD visualization | S-21 | 970 | |
XC103 | $BFb1_E{$r%3!<%F%#%s%0$7$?Fs=E1_E{4V%F%$%i!<12$NN.F0(J | Taylor Voltex Drag Reduction Coating | S-21 | 166 | |
(10:00$B!A(J11:00) ($B:BD9(J $B?N;V(J $BOBI'!&550f(J $BEP(J) | |||||
XC104 | $B3Q7?JP?D3IYBAe$N=jMWF0NO$NAj4X(J | eccentric mixing power consumption rectangular vessel | S-21 | 1 | |
XC105 | $B%G%#%9%Q! | mixing power consumption dispersion | S-21 | 6 | |
XC106 | $B%3!<%s7?%I%i%U%H%A%e!<%V$N:.9g@-G=(J | Mixing Draft tube cone | S-21 | 8 | |
(11:00$B!A(J12:00) ($B:BD9(J $B8VED(J $B1YG7!&_'C+(J $B<#CK(J) | |||||
XC107 | [$BM%=(O@J8>^(J] $BN.L.LL$NJQ7A$K$h$k:.9g$NB%?J(J | mixing streak surface template | S-21 | 27 | |
XC108 | $B?tCM%7%_%e%l!<%7%g%s$rMQ$$$?3IYBAe$N%9%1!<%k%"%C%W@_7W(J | Mixing CFD Simulation | S-21 | 240 | |
XC109 | $BFs<4%9%/%j%e2!=P5!$N?75,:.N}%(%l%a%s%H(J:$B79 2A(J | twin screw extruder tiped-kneading disk rheology | S-21 | 849 | |
$B%7%s%]%8%&%`(J <$BN3;R!&N.BN%W%m%;%9It2q%7%s%]%8%&%`!!!c0lHL8xJg$;$:!d(J> | |||||
(13:00$B!A(J13:20) ($B;J2q(J $B>e%N;3(J $B<~(J) | |||||
XC113 | [$BE8K>9V1i(J] $BJ!Eg86H/;v8N$K$h$kJ| | Fukushima Disaster Nuclear Contaminated Biomass Radioactive Decontamination | S-22 | 75 | |
(13:20$B!A(J14:00) ($B;J2q(J $BK\4V(J $B=S;J(J) | |||||
XC114 | [$BE8K>9V1i(J] $B86;RNOH/EE=j$K$*$1$kBZN11x@w?e=hM}5;=Q(J | Cooling Water Cesium Nuclear Power Plant | S-22 | 92 | |
(14:00$B!A(J14:40) ($B;J2q(J $B2CF#(J $BDw?M(J) | |||||
XC116 | [$BE8K>9V1i(J] $B%U%i%/%?%k7A>u$rMQ$$$?%_%-%7%s%0$N8&5f(J | Turbulent Mixing Fractal Impeller CFD | S-21 | 150 | |
(14:40$B!A(J15:40) ($B:BD9(J $B;03Q(J $BN4B@!&Fn(J $B=S=<(J) | |||||
XC118 | $B%9%?%F%#%C%/%_%-%5!<$rMQ$$$?Fs1U:.9g%$%*%s2M66%O%$%I%m%2%k:n@=%W%m%;%9$N8!F$(J | Static mixer Hydrogel Kenics | S-21 | 683 | |
XC119 | $B5!3#E*2sE>McYxYBAe7?H?1~4o$K$*$1$kAeDl6aK5$G$N1UAj:.9g(J | mixing reactor fluid flow | S-21 | 425 | |
XC120 | $B3IYBAe$NAXN.:.9g>l$K$*$1$kN3;RJ,;65sF0(J | Solid-liquid mixing Isolated mixing region Particle dispersion | S-21 | 664 | |
(15:40$B!A(J16:40) ($B:BD9(J $BNk@n(J $B0l8J!&ARDE(J $B@5J8(J) | |||||
XC121 | $B8G1U3IYBAe$K$*$1$kMc9b$5$HN3;R>r7o$,N3;R>WFM8=>]$K5Z$\$91F6A$N(JCFD$B$K$h$k8!F$(J | mixing particle collision phenomenon CFD | S-21 | 274 | |
XC122 | $B2sE>1_E{7?1U1UCj=PAuCV$K$*$1$kMO1U$NN.F05Z$SJ,;6>uBV$N7WB,(J | mixing liquid-liquid extraction PIV | S-21 | 309 | |
XC123 | $B2sE>1_E{7?1U1UCj=PAuCV$K$*$1$kMO1U$NN.F05Z$SJ,;6>uBV$N(JCFD$B2r@O(J | CFD centrifugal contactor | S-21 | 354 | |
(16:40$B!A(J17:20) ($B:BD9(J $B5H@n(J $B;KO:!&@>2,(J $B8wMx(J) | |||||
XC124 | $B5$1U<+M33&LL>e$KH/@8$9$k%^%i%s%4%K8z2L$K$h$k%^%$%/%m:.9gN.$N2D;k2=(J | Micromixing Gas-liquid free interface Marangoni effect | S-21 | 164 | |
XC125 | $B5$1U<+M33&LL$rMQ$$$?(J2$B1UBN$N%^%$%/%m:.9gB%?J$N8&5f(J | Micromixing Gas-liquid free interface Advective diffusion | S-21 | 675 | |
XD $B2q>l(J | |||||
$B9V1i(J $B;~9o(J | $B9V1i(J $BHV9f(J | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(J | $BJ,N`(J | $BHV9f(J $B | |
$B%7%s%]%8%&%`(J <$BE}9g2=9)3X$N?7E83+(J> | |||||
(13:00$B!A(J14:20) ($B:BD9(J $B;32<(J $BA1G7!&HxF#(J $B@65.(J) | |||||
XD113 | [$BE8K>9V1i(J] $B0eLtIJ@=B$%W%m%;%9$NIJe$K8~$1$?E}9g2=9)3X(J | Integration engineering IDEF0 Pharmaceutical production | S-27 | 785 | |
XD115 | [$BE8K>9V1i(J] $BE}9g2=9)3X$X$N4|BT(J-$B@=Lt4k6H$N;kE@$+$i(J- | Pharmaceutical industry Information integration Industrial perspective | S-27 | 87 | |
(14:20$B!A(J15:40) ($B:BD9(J $BEgED(J $B9T63!&NkLZ(J $B2mG7(J) | |||||
XD117 | [$BE8K>9V1i(J] $B0eLtIJ@=B$%W%m%;%93W?7$X$ND)@o(J $B!A%j%"%k%?%$%`%j%j!<%9$NF3F~$H:#8e$NE8K>!A(J | Real time release Data analysis IDEF0 | S-27 | 95 | |
XD119 | [$BE8K>9V1i(J] $B0eLtIJ$N%W%m%;%9%(%s%8%K%"%j%s%0$KBP$9$k%7%9%F%`%:%"%W%m!<%A(J | Quality by Design Activity Model-based Approach Quality HAZOP | S-27 | 93 | |
(15:40$B!A(J16:20) ($B;J2q(J $B^ | |||||
XD121 | [$BE8K>9V1i(J] $B4k6H$K$*$1$k8&5f3+H/%W%m%8%'%/%H%^%M%8%a%s%H$NE}9g3XE*%"%W%m!<%A(J | R&D Project Management Knowledge Structuring Stage-Gate | S-27 | 626 | |
(16:20$B!A(J17:00) ($B;J2q(J $B?y;3(J $B90OB(J) | |||||
$BAm9gF$O@(J | |||||
XE $B2q>l(J | |||||
$B9V1i(J $B;~9o(J | $B9V1i(J $BHV9f(J | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(J | $BJ,N`(J | $BHV9f(J $B | |
$B%7%s%]%8%&%`(J <$B%@%$%J%_%C%/$JH?1~!&0\F08=>]$N2r@O$H%W%m%;%96/2=$X$N1~MQ(J> | |||||
(10:00$B!A(J11:20) ($B:BD9(J $B>.NS(J $BBgM4!&8E@n(J $BD> | |||||
XE104 | $B%^%$%/%m%j%"%/%?$rMQ$$$?29EYHsDj>oA`:n$K$*$1$k:GE,A`:n>r7o$N8!F$(J | Microreactor Process Intensification Periodic Operation | S-25 | 207 | |
XE105 | $BHsDj>o%9%W%l!<%Q%k%9K!$K$h$k(J2-$B%W%m%Q%N!<%kC&?eAGH?1~$N8&5f(J | non-steady state spray pulse method 2-propanol dehydrogenation | S-25 | 566 | |
XE106 | V-Mg-O$B?(G^>e$G$N%W%m%Q%s;@2=C&?eAG$N<~4|E*G;EYJQF0A`:n(J | Cyclic operation Oxidative dehydrogenation Lattice oxygen | S-25 | 670 | |
XE107 | $B;0Aj7OAj4V0\F0?(G^H?1~$K$*$1$kAX>uBVA`:nK!$N8!F$(J | phase transfer catalysis continuous process process design | S-25 | 194 | |
(11:20$B!A(J12:00) ($B;J2q(J $B:y0f(J $B@?(J) | |||||
XE108 | [$BE8K>9V1i(J] $B%a%?%s$N%I%i%$%j%U%)!<%_%s%0H?1~$K$*$1$kC:AG | Dry reforming Hydrogen production CO2 reduction | S-25 | 229 | |
(13:00$B!A(J13:40) ($B;J2q(J $BBgB<(J $BD>?M(J) | |||||
XE113 | [$BE8K>9V1i(J] $BHs%K%e!<%H%sN.BN7ON.F0%W%m%;%9$N6/2=$K$D$$$F(J | Non-Newtonian fluid system Process intensification Rheological properties | S-25 | 4 | |
(13:40$B!A(J15:00) ($B:BD9(J $B@>;3(J $B3P!&>>K\(J $B=(9T(J) | |||||
XE115 | Taylor-Couette$B12N.$l$ND62;GH7WB,K!$K$D$$$F(J | Taylor vortex flow Ultrasound velocity measurement Visualization | S-25 | 193 | |
XE116 | $B?6F0N.$H%P%C%U%k$rMQ$$$?Cf6u;eKlJ,N%%W%m%;%9$N6/2=(J | Oscillatory flow Membrane fouling Helical baffle | S-25 | 656 | |
XE117 | $B%W%k%m%K%C%/%_%;%k$+$i$NFbJqJ* | Ultrasound Pluronic micelle Release | S-25 | 399 | |
XE118 | S-$B%7%9%F%`7?<0$rMQ$$$FBgC@$+$D8zN($h$/Be | S-system Metabolic pathway system Mathematical model | S-25 | 258 | |
XF $B2q>l(J | |||||
$B9V1i(J $B;~9o(J | $B9V1i(J $BHV9f(J | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(J | $BJ,N`(J | $BHV9f(J $B | |
$B%7%s%]%8%&%`(J <$B4D6-It2q%7%s%]%8%&%`(J> | |||||
(8:40$B!A(J9:40) ($B:BD9(J $B;3K\(J $B8wIW(J) | |||||
XF100 | $B%f%&%l%$%\%d(J(Ciona savignyi)$B$N3$?e$m2aG=NO$NI>2A(J | Filtration of sea water Ciona savignyi | S-31 | 915 | |
XF101 | $BF|K\3$$K$*$1$kM-5!1x@wJ* | the Japan Sea Organic Pollutants PAH | S-31 | 733 | |
XF102 | $B8w%U%'%s%H%sH?1~$K$h$k%8%*%-%5%s$N;@2=J,2r5sF0$K5Z$\$9H?1~>r7o$N1F6A(J | Photo-assisted Fenton reaction 1,4-dioxane Oxidative degradation | S-31 | 373 | |
(9:40$B!A(J11:00) ($B:BD9(J $BCf@n(J $B9@9T!&DT(J $BLT;V(J) | |||||
XF103 | $B%*%k%,%N%/%l!<$rMQ$$$k?eCf936]:^$N9b8zN(Ja=8!&J,2r(J | wastewater treatment organoclay antibiotics | S-31 | 406 | |
XF104 | $B%"%k%_%I%m%9M3Mh(JLDH$B$rMQ$$$k?eMO1UCf$NM-5!2=9gJ*$N=|5n$K$D$$$F(J | anion exchanger aluminum dross LDH | S-31 | 426 | |
XF105 | $B%-%N%s%W%m%U%!%$%kK!$rMQ$$$?BOHn@=B$2aDx$K$*$1$kHy@8J*72=89=B$$NJQ2=(J | Composting Process Quinone Profile Method Microbial Community Structure | S-31 | 718 | |
XF106 | Membrane bioreactor$B$K$*$1$k99?77?D94|Kl:905M=B,%b%G%k$N3+H/(J | Membrane bioreactor transmembrane pressure fouling | S-31 | 337 | |
(11:00$B!A(J12:00) ($B;J2q(J $BCf0f(J $BCR;J(J) | |||||
XF107 | [$BE8K>9V1i(J] $B%P%/%F%j%"$N%3%_%e%K%1!<%7%g%s5!9=@)8f$K$h$k%P%$%*%U%#%k%`!&%P%$%*%U%!%&%j%s%0BP:v5;=Q$N3+H/(J | Biofilm Biofouling quorum Sensing | S-31 | 98 | |
(13:00$B!A(J14:20) ($B:BD9(J $B@n@>(J $BBvLi!&5\ED(J $B9/?M(J) | |||||
XF113 | $B@=9]%9%i%0$+$i$NE4MO=P$H3$At@80i$NB%?J$K5Z$\$9BOHn$N1F6A(J | compost steelmaking slag iron elution | S-31 | 613 | |
XF114 | $B^4^XEZ$rE:2C$7$?@=9]%9%i%0$N433c:F@8:`$H$7$F$NI>2A(J | steel slags dredged soil shear strength | S-31 | 869 | |
XF115 | $BDcIJ0LC:%P%$%*%V%j%1%C%HG3>F3%;\MQ$K$h$kEZ>mCf1vN`%j!<%A%s%05Z$SI,MW?eNL$NI>2A(J | bio-briquette salt leaching soil amelioration | S-31 | 760 | |
XF116 | TiO2$B8w?(G^$K$h$kCO2Z8&5f(J | hexavalent chromium TiO2 groundwater | S-31 | 483 | |
(14:20$B!A(J15:40) ($B:BD9(J $B | |||||
XF117 | Fe(III)$B$rC4;}$5$;$?%$%*%s8r49 | ion exchange resin As(V) removal ferrihydrite | S-31 | 120 | |
XF118 | $B;@2=:^(JMnO2$B$rE:2C$7$?&C(J-Al2O3$B$K$h$k(JAs(III)$B$N;@2=5[Ce(J | alumina adsorption arsenic | S-31 | 430 | |
XF119 | $B?e;@2=J*%"%k%_%K%&%`$K$h$k4uGv(JSi$B4^M-GQ?e=hM}$K$*$1$k6&D@K!$H5[CeK!$NHf3S(J | Coprecipitation Aluminum Hydroxide Kaolinite | S-31 | 122 | |
XF120 | $B%j%s!"%+%j%&%`$NF1;~2s<}$K4X$9$k8&5f(J | potassium phosphorus KMP | S-31 | 118 | |
(15:40$B!A(J16:20) ($B:BD9(J $B=j(J $B@i@2(J) | |||||
XF121 | $B5[Ce:`:F@8$H0p$o$iC:$r3hMQ$7$?8G7AJ*$H$7$F$N(JK$B!&(JP$B2s<}(J | adsorbent agricultural waste KMgPO₄ | S-31 | 132 | |
XF122 | $B;HMQ:Q$_7V8w4I$+$i$N%j%s$NMO=P$H2s<}(J | recovery phosphate used fluorescent tube | S-31 | 308 | |
(16:20$B!A(J17:00) ($B:BD9(J $B86ED(J $B9@9,(J) | |||||
XF123 | $B4D6-G[N87?K">C2P:^$N$?$a$NGQ?)MQL}%j%5%$%/%k%7%9%F%`(J | fire-fighting foam biosurfactant environmentally friendly | S-31 | 553 | |
XF124 | $B0lHLGQ4~J*?eG.=hM};D^V$N?e>x5$%,%92=$K4X$9$k8&5f(J | hydrothermal treatment gasification municipal solid waste | S-31 | 690 | |
XG $B2q>l(J | |||||
$B9V1i(J $B;~9o(J | $B9V1i(J $BHV9f(J | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(J | $BJ,N`(J | $BHV9f(J $B | |
$B%7%s%]%8%&%`(J <IPCC$BBh#5 | |||||
(13:00$B!A(J14:20) ($B:BD9(J $BC]2<(J $B7rFs(J) | |||||
XG113 | [$B0MMj9V1i(J] $B29CH2=%7%0%J%k$H$=$N860xFCDj(J | AOGCM Climate change Detection and attribution | S-32 | 654 | |
XG115 | [$B0MMj9V1i(J] $BCO5e29CH2=$,0z$-5/$3$91F6A$K$D$$$F(J | Impact Climate change Adaptation | S-32 | 657 | |
(14:20$B!A(J16:20) ($B:BD9(J $B9uBt(J $B8|;V(J) | |||||
XG117 | [$B0MMj9V1i(J] $B5$8uJQF04KOB$K4X$9$k:G6a$N8&5f!&J,@OF08~(J | Mitigation Climate change | S-32 | 660 | |
XG119 | [$B0MMj9V1i(J] $B:GIOCO0h$K$*$1$kB@M[8wH/EE$rMxMQ$7$?%3%_%e%K%F%#?e6!5k%7%9%F%`(J | Least develoed region Water Supply Solar Power | S-32 | 667 | |
XG121 | [$BE8K>9V1i(J] $BES>e9q$N;}B32DG=$J%P%$%*%^%9Mx3hMQ$X$NF;(J | Developing Countries Biomass Sustainable Utilization | S-32 | 676 | |
ZA $B2q>l(J | |||||
$B9V1i(J $B;~9o(J | $B9V1i(J $BHV9f(J | $B9V1iBjL\!?H/I=$B%-!<%o!<%I(J | $BJ,N`(J | $BHV9f(J $B | |
$B%7%s%]%8%&%`(J <$BH?1~9)3XIt2q(J $B%]%9%?!<%;%C%7%g%s(J> | |||||
ZA1P01 | $B%O%K%+%`7?(JNi$B7O9=B$BN?(G^$K$h$kLO5<%P%$%*%^%9%?!<%k$H$7$F$N%J%U%?%l%s$N?e>x5$2~ | Structured catalyst Naphthalene steam reforming Biomass tar | S-29 | 62 | |
ZA1P02 | $BG.J,2r%P%$%*%,%9$r86NA$H$7$?8zN(E*?eAG@=B$(J | biomass hydrogen palladium membrane | S-29 | 346 | |
ZA1P03 | $BC&N2EtL}$N?e>x5$2~ | membrane reactor steam reforming kerosene | S-29 | 918 | |
ZA1P04 | CO2$B$N9bB.%a%?%s2=MQ(JNi$B7O9=B$BN?(G^$K$*$1$k=u?(G^$NE:2C8z2L(J | Structured catalyst Methanation Carbon dioxide | S-28 | 61 | |
ZA1P05 | CO2$BMO2rKDD%1UAj$rMQ$$$?%8%K%H%m%"%K%j%s$NA*BrE*?eAG2=H?1~(J | dense phase CO2 selective hydrogenation FTIR | S-29 | 171 | |
ZA1P06 | $BCbAG%I!<%WC:AG$N1v4p?(G^@-G=$KBP$9$kD4@=>r7o$N1F6A(J | Catalyst preparation Knoevenagel condensation Ammoxidation | S-28 | 325 | |
ZA1P07 | $B%Q%i%8%&%`C4;}$*$h$S%+%?%i!<%<8GDjA!0]$rMQ$$$?D6=c?eCf$N2a;@2=?eAGJ,2r(J | hydrogen peroxide decomposition palladium-impregnated fiber catalase-immobilized fiber | S-29 | 333 | |
ZA1P08 | $B%U%#%k%`>u8GDj2=%&%l%"!<%(G^$N9g@.$HO"B3N.DL<0H?1~%7%9%F%`$rMQ$$$?G"AG$N2C?eJ,2rH?1~I>2A(J | immobilized enzyme film-type catalyst continuous flow reactor | S-29 | 363 | |
ZA1P09 | $B9b29C&?eAGH?1~2<$K$*$1$kC:AGC4;}(JPd$B?(G^$NNt2=5sF0$H%7%j%+HoJ$8z2L(J | silica coating sintering dehydrogenation | S-29 | 378 | |
ZA1P10 | $B6bB0%$%*%sE:2C$,E7A3?'AG$N2~ | Natural pigment Flavonoid Antioxidant potential | S-29 | 519 | |
ZA1P11 | $B8GBN;@2=J*G3NAEECS7AH?1~4o$K$*$1$k6u5$6K?(G^(JLa1-xSrxMnO3$B$NAH@.Hf$N1F6A(J | Fuel cell reactor Partial oxidation LSM | S-29 | 930 | |
ZA1P12 | $B%7%/%m%X%-%5%sC&?eAGMQB?4I<0%a%s%V%l%s%j%"%/%?!<$K$*$1$kKlJ]8n4I$N1F6A(J | membrane reactor protection pipe cyclohexane dehydrogenation | S-29 | 416 | |
ZA1P13 | $B%a%s%V%l%s%j%"%/%?!<$rMQ$$$?%"%s%b%K%"J,2r$K$*$1$kH?1~G.$N1F6A(J | ammonia decomposition membrane reactor | S-29 | 672 | |
ZA1P14 | $B=[4DN.O)$rMxMQ$7$?%^%$%/%mN.O)Fb5$1UFsAjN.$K$*$1$k%,%95[<}B.EY$N2r@O(J | gas-liquid flow gas absorption microchannnel | S-29 | 789 | |
ZA1P15 | $B%^%$%/%mGH%P%V%k%W%i%:%^$K$h$k%j%0%K%s%b%G%kJ,;R$NH?1~(J | Plasma Biomass Lignin | S-29 | 305 | |
ZA1P16 | $B%^%$%/%mGH%P%V%k%W%i%:%^$K$h$j@8@.$9$k(JOH$B%i%8%+%k$NH?1~(J | plasma hydroxyl radical terephthalic acid | S-29 | 312 | |
ZA1P17 | $BD62;GH$rMQ$$$?%3%]%j%^!<$N9g@.$K$*$1$kH?1~B.EY$*$h$SJ,;RNL$K5Z$\$9=t0x;R$N1F6A(J | ultrasound polymerization copolymer | S-29 | 370 | |
ZA1P18 | $B%J%NIC%@%V%k%Q%k%9%l!<%6!<>H | spherical particle double pulsed laser particle size | S-29 | 331 |