Japanese page
SCEJ

SCEJ 53rd Autumn Meeting (Nagano, 2022)

Program search result : 機械学習 : 18 programs

The preprints can be viewed by clicking the Paper IDs.
Yellow-back sessions on Technical sessions will be On-site/online Hybrid sessions, others are Online sessions.
Please check notices on menu page.

Title (J) field includes “機械学習”; 18 programs are found. (“Poster with Flash” presentations are double-counted.)
The search results are sorted by the start time.

TimePaper
ID
Title / AuthorsKeywordsTopic codeAck.
number
Day 1
9:0010:00
PB114Construction of Sequence-based prediction model for high expression VHH clones using machine learning
(Kyoto Inst. Tech.) *(Stu)Takahashi Asuka, Hamamoto Yuri, (Stu)Numata Tatsunori, Mihara Akihiro, (Reg)Horiuchi Jun-ichi, (Reg)Kumada Yoichi
VHH
machine learning
production
SY-67733
Day 1
12:0012:20
CA110Calculation of group additivity values for cyclic silane compounds by machine learning
(Yokohama Nat. U.) *(Stu)Sato Masaya, (Reg)Izato Yu-ichiro, (Reg)Miyake Atsumi
machine learning
silane compounds
quantum chemical calculation
SY-51408
Day 1
13:0013:40
DJ113[Review lecture] Improvement of prediction accuracy of W-ALD deposition rate by machine learning
(TTS) *Aita Michitaka, Yamasaki Hideaki, Hotta Takanobu, Kawaguchi Takuya, Narushima Kensaku, Kubo Atsushi, Mochizuki Seiichiro, Takagi Toshio
Machine Learning
ALD
Simulation
ST-24221
Day 1
14:0014:20
DC116Machine Learning-based Multi-Objective Optimization for CO2 Membrane Separation Process
(AIST) *(Reg)Hara Nobuo, (Reg)Taniguchi Satoshi, (Reg)Yamaki Takehiro, (Reg)Nguyen Thuy, (Reg)Kataoka Sho
multi-objective
machine learning
CO2 membrane separation
SY-60258
Day 1
16:0016:20
CB122Estimation of temperature dependence of organic compounds solubility in water by machine learning
(Shinshu U.) *(Stu)Minesugi Haruka, (Reg)Shimada Iori, (Reg)Fukunaga Hiroshi, (Reg)Takahashi Nobuhide, (Reg)Osada Mitsumasa
solubility
machine learning
phase equilibrium
SY-73709
Day 1
16:2017:40
PB114Construction of Sequence-based prediction model for high expression VHH clones using machine learning
(Kyoto Inst. Tech.) *(Stu)Takahashi Asuka, Hamamoto Yuri, (Stu)Numata Tatsunori, Mihara Akihiro, (Reg)Horiuchi Jun-ichi, (Reg)Kumada Yoichi
VHH
machine learning
production
SY-67733
Day 2
9:009:20
DA201Markedly enhanced identification of anti-coronavirus peptides by machine learning
(Kyutech) *(Reg)Kurata H., Tsukiyama S.
Computer
deep learning
anti-coronavirus
SY-7032
Day 2
9:4010:00
CA203[Featured presentation] Material design on CO2 capture system by application of machine learning using molecular descriptor combined with diffusion model
(Tokyo Tech) *(Stu)Kaneko Hiroshi, (Stu)Kataoka Taishi, (Stu)Hao Yingquan, (Reg)Orita Yasuhiko, (Reg)Shimoyama Yusuke
molecular descriptor
CO2 capture
machine learning
SY-51636
Day 2
10:0010:20
CA204Prediction of thermal conductivity for polymer-based composite materials using machine learning
(Kanazawa U.) *(Stu)Tsukamura Keita, (Reg)Haruki Masashi
Thermal conductivity
Machine learning
Polymer-based composite material
SY-5191
Day 2
10:4011:00
BA206Machine Learning-based Multi-Objective Optimization for CO2 Absorption Process
(AIST) *(Reg)Hara Nobuo, (Reg)Taniguchi Satoshi, (Reg)Yamaki Takehiro, (Reg)Nguyen Thuy, (Reg)Kataoka Sho
multi-objective
machine learning
CO2 absorption
SY-65253
Day 2
11:2011:40
DH208Machine-learning model for protease cleavage site prediction using 1990 peptides
(Nagoya U.) Mizutani Ryota, Mori Yoko, Ogawa Shota, Tazoe Kaho, (Reg)Akiyama Hirokazu, (Reg)Shimizu Kazunori, *(Reg)Honda Hiroyuki
Bioactive peptide
Cleavage site
Machine-learning
SY-71337
Day 3
9:009:20
CB301Development of a Model for Predicting the Solubility of Organic Compounds in Supercritical CO2 Using Machine Learning Based on QSPR
(Kanazawa U.) *(Stu)Yamamoto S., (Stu)Maeda N., Kawanishi T., (Reg)Uchida H.
Machine learning
Molecular descriptors
Solubility
SY-73754
Day 3
9:2010:20
PB313Examination of machine learning to find ion solvation extractants for Ga(Ⅲ)
(U. Miyazaki) *(Stu)Hashizume Mai, (Stu)Iwakiri Yuhi, (Reg)Inada Asuka, (Reg)Ohe Kaoru, (Reg)Oshima Tatsuya
solvent extraction
machine learning
Gallium
SY-57421
Day 3
10:2011:20
PB308A research for descriptors that contribute to the prediction accuracy of ion solvation extractability to Au(III) by machine learning.
(U. Miyazaki) *(Stu)Iwakiri Yuhi, (Reg)Inada Asuka, (Reg)Ohe Kaoru, (Reg)Oshima Tatsuya
machine learning
solvent extraction
gold
SY-57259
Day 3
10:3012:00
PA320Prediction of an in-Plane Anomalous Current Using Numerical Simulation and Machine Learning
(Kyushu U.) *(Stu)Mori Y., (Stu)Komori C., (Reg)Inoue G.
Modeling
Machine learning
Current distribution
ST-23100
Day 3
11:4012:00
DC309Prediction of phase equilibrium of water-organic compounds system at high-temperature and high-pressure using machine learning
(Shinshu U.) *(Stu)Tamura Kotaro, (Reg)Shimada Iori, (Reg)Fukunaga Hiroshi, (Reg)Takahashi Nobuhide, (Reg)Osada Mitsumasa
machine learning
prediction of phase equilibrium
high-temperature and high-pressure
ST-21532
Day 3
14:2014:40
DC317Inverse design of polymer membrane structure for gas separation using Junction Tree VAE machine learning
(Kogakuin U.) *(Stu)Matsumoto Takumi, (Reg)Miyagawa Masaya, (Reg)Takaba Hiromitsu
machine learning
polymer membrane
gas separation
ST-21712
Day 3
14:4015:00
DC318Design of both membrane-based process and membrane materials with machine learning
(Meiji U.) *(Stu)Yuyama Shunsuke, (Reg)Kaneko Hiromasa
Membrane module
Materials Informatics
Process design
ST-21187

Technical program
Technical sessions (Wide)  (For narrow screen)
Session programs
Search in technical program
SCEJ 53rd Autumn Meeting (Nagano, 2022)


© 2023 The Society of Chemical Engineers, Japan. All rights reserved.
For more information contact Organizing Committee of SCEJ 53rd Autumn Meeting
E-mail: inquiry-53fwww3.scej.org