Japanese page
SCEJ

SCEJ 88th Annual Meeting (Tokyo, 2023)

Program search result : Machine learning : 22 programs

The preprints(abstracts) are now open (Mar. 1st). These can be viewed by clicking the Paper IDs. The ID/PW sent to the Registered participants in Period I/II and invited persons are required.

Keywords field exact matches “Machine learning”; 22 programs are found.
The search results are sorted by the start time.

TimePaper
ID
Title / AuthorsKeywordsTopic codeAck.
number
Day 1
15:0015:20
I119Quantitative Comparison of Reinforcement Learning and Model-based Optimal Control for Chemical Processes
(Kyoto U.) (Int)Oh Tae Hoon
process control
machine learning
optimal control
6-d52
Day 1
16:4017:00
D124[Invited lecture] Graph theory approach to data-driven energy planning
(Radbouf U.) Sin Yong Teng
P-graph
energy planning
machine learning
K-2620
Day 2
9:2010:20
PB225Machine learning application for the directed evolution of antibody fragments
(Tohoku U.) *(Stu)Kawada S., (AIST) Kurumida Y., (Tohoku U.) (Reg)Ito T., (AIST) Nguyen T. D., (Tohoku U.) (Reg)Nakazawa H., (Tohoku U./Ochanomizu U.) Nishi H., (AIST/AIST-Waseda U./U. Tokyo/RIKEN) Saito Y., (AIST/RIKEN) Kameda T., (U. Tokyo/RIKEN/NIMS) Tsuda K., (Tohoku U./RIKEN) (Reg)Umetsu M.
Antibody fragments
Phage display
Machine learning
7-a551
Day 2
9:2010:20
PB237Machine-learning assisted evolution of fungal cellulase
(Tohoku U.) *(Reg)Nakazawa Hikaru, (Reg)Ito Tomoyuki, (Reg)Umetsu Mitsuo, Kataoka Shiro
machine learning
enzyme
biorefinery
7-a710
Day 2
11:0011:20
F207Hybrid modelling of active pharmaceutical ingredient flow synthesis in ring-opening reaction of an epoxide with a Grignard reagent
(U. Tokyo) *(Stu)Kim Junu, (Reg)Hayashi Yusuke, (Int)Badr Sara, (Pharmira) Okamoto Kazuya, Hakogi Toshikazu, (Reg)Furukawa Haruo, (Shionogi Pharma) (Reg)Yoshikawa Satoshi, (Reg)Nakanishi Hayao, (U. Tokyo) (Reg)Sugiyama Hirokazu
Flow chemistry
Machine learning
Random forest regression
5-i167
Day 2
13:2014:20
PC229Simulation and design of integrated upstream and downstream monoclonal antibody production processes
(UTokyo) *(Stu)Shigeyama A., (Int)Badr S., (Reg)Hayashi Y., (Reg)Sugiyama H.
Surrogate model
Bayesian optimization
Machine learning
6-b496
Day 2
14:2015:20
PC230Application of machine learning and physical modeling for detecting hydrogen leakage from hydrogen pipeline
(Yokohama Nat. U.) *(Stu)Suzuki Yuki, Suzuki Tomoya, Nakayama Jo, (NEC) Soma Tomoya, (Yokohama Nat. U.) (Reg)Izato Yuichiro, (Reg)Miyake Atsumi
hydrogen pipeline
leak detection
machine learning
10-e269
Day 2
14:2015:20
PC236Machine Learning Study for Identifying key factors that determine the Corrosion Resistance of Stainless Steels
(Nat. Central U.) *Hsu Yueh-Hua, Chien Szu-Chia
Machine Learning
Corrosion
6-g420
Day 3
9:009:20
D301Prediction of surface-modified iron oxide nanoparticles extraction from reaction field using solubility parameters and machine learning
(Tokyo Tech) *(Stu)Wijakmatee Thossaporn, (Reg)Orita Yasuhiko, (Reg)Shimoyama Yusuke
nanoparticle extraction
solubility parameter
machine learning
IS-1475
Day 3
9:2010:20
PD311Prediction of nanoparticle dispersion by machine learning with Hansen parameters as input
(Tokyo Tech) *(Stu)Shibata Koh, (Reg)Orita Yasuhiko, (Reg)Shimoyama Yusuke
Hansen solubility parameter
nanoparticle dispersion
machine learning
1-b486
Day 3
9:2010:20
PD333Prediction of product composition using machine learning in co-processing of bio-oil and heavy oil in catalytic cracking process
(Shinshu U.) *(Stu)Yasuike Shun, (Reg)Osada Mitsumasa, (Reg)Fukunaga Hiroshi, (Reg)Takahashi Nobuhide, (Reg)Shimada Iori
bio-oil
co-processing
machine learning
5-a539
Day 3
10:2010:40
H305High-speed computing of powder mixing using machine learning with random motion model
(Osaka Metro. U.) *(Stu)Kishida Naoki, (Reg)Nakamura Hideya, (Reg)Ohsaki Shuji, (Reg)Watano Satoru
Powder mixing
High-speed computing
Machine learning
2-f112
Day 3
10:2011:20
PD346The development of Porous polymer monolith catalyst with the application of machine learning
(Kyushu U.) *(Stu)Syu Sintei, (Reg)Nagao Masanori, (Reg)Miura Yoshiko
Immobilized Catalyst
Monolith
Machine Learning
5-a317
Day 3
10:4011:00
H306[Featured presentation] Machine learning-based calibration of physical properties in bulk material simulations
(U. Tokyo) *(Reg)Li Shuo, (Reg)Sakai Mikio
Discrete element method
Machine learning
Model identification
2-f284
Day 3
11:0011:20
I307Dipeptide property analysis for the prediction of liquid chromatography retention time
(Nagoya U.) *(Stu)Hisada Takumi, Fujitani Masaya, (U. Shizuoka) Terada Yuko, Ito Keisuke, (Nagoya U.) (Reg)Kato Ryuji
peptide
LC-MS/MS
machine learning
7-h450
Day 3
14:0514:55
R306[Requested talk] Theory-driven Machiene Learning for Chemical Engineering
(Tokyo U. Sci.) *(Reg)Murakami Yuya, (Reg)Shono Atsushi
Machine learning
Artificial Intelligence
Big data
HQ-21471
Day 3
14:2015:20
PE302Polymer structure generation using generative adversarial networks and its application to separation membrane design
(Kogakuin U.) *(Stu)Nishio Kentaro, (Stu)Shobuke Hayato, (Stu)Matsumoto Takumi, (Reg)Miyagawa Masaya, (Reg)Takaba Hiromitsu
machine learning
polymer membrane
gas separation
4-a625
Day 3
14:2015:20
PE340Machine Learning-assisted Large-scale Screening of Metal-organic Frameworks for CO2/CO Separation
(Nat. Taiwan U.) *Sung I-Ting, Lin Li-Chiang
Metal-organic frameworks
CO2/CO separation
machine learning
4-e487
Day 3
15:0015:40
B319[Requested talk] Practical use of digital technology at chemical plant
(Sumitomo Chemical) (Reg)Hiraishi Yasuaki
chemical plant
digital transformation
machine learning
SS-5349
Day 3
16:0017:30
Q306[Requested talk] Practical use of digital technology at chemical plant
(Sumitomo Chemical) (Reg)Hiraishi Yasuaki
chemical plant
digital transformation
machine learning
SS-7348
Day 3
16:0017:30
Q307Inverse design of functional separation materials using deep generation models.
(Kogakuin U.) *(Stu)Matsumoto Takumi, (Reg)Miyagawa Masaya, (Reg)Takaba Hiromitsu
machine learning
polymer membrane
gas separation
SS-7357
Day 3
16:0017:30
Q314[Invited lecture] AI use cases in predictive maintenance that have entered the practical stage
(Brains Tech.) Hayashi Takuma
AI
Machine Learning
Predictive Maintenance
SS-7393

Technical program
Technical sessions (Wide)  (For narrow screen)
Session programs
Search in technical program
SCEJ 88th Annual Meeting (Tokyo, 2023)


© 2023 The Society of Chemical Engineers, Japan. All rights reserved.
For more information contact Organizing Committee of SCEJ 88th Annual Meeting (Tokyo 2023) and IChES 2023
E-mail: inquiry-88awww3.scej.org